期刊文献+

气囊抛光过程的运动精度控制 被引量:9

Motion-precision control in bonnet-polishing
下载PDF
导出
摘要 针对用于球面、非球面光学元件超精密光学加工的气囊抛光技术,提出了一套控制抛光过程中气囊运动精度的方法。该方法通过控制加工单元的温度,保证抛光过程中设备运动精度达到50μm;使用坐标传递法,使检测数据二维方向对准不确定度达到0.30-0.70mm。另外,基于磨头去除量估计与反馈修正法,提高精抛过程面形误差收敛效率。最后,通过磨头探测校准法,将磨头与加工工件法向位置精度提高至10μm。实际抛光实验显示:使用运动精度控制法在280mm口径的平面精密抛光中获得的面形加工精度为0.8nm(RMS),在160mm口径的凹球面精密抛光中获得的面形加工结果为1.1nm(RMS),实现了超高精度面形修正的目的,为超高精度球面、非球面光学元件加工提供了一套行之有效的方法。该方法同样适用于其他接触式小磨头数控抛光方法。 To meet the ultra-high precision manufacture demands of spherical surfaces and aspherical surfaces in an optical system of Deep Ultra Violet(DUV)and Extreme Ultra Violet(EUV),a series of motion-precision control methods in bonnet-polishing were proposed.Firstly,the temperatures of main operation units were finely controlled to allow the motion-precision of polishing to be to 50μm.Then,the coordinates transmitting method was used to guarantee the two-dimension unity between measured data and operating data to be 0.30-0.70 mm.Furthermore,the convergence efficiency of surface-error in fine polishing was improved by bonnet removal estimation method and feedback correction method.Finally,the vertical position accuracy between bonnet and work piece was improved to 10μm by probing-correction method.The experiment results on a actual polishing by using motionprecision control methods indicate that the surface machining accuracy is 0.8nm(RMS)in polishingaflat with a diameter of 280 mm,and that is 1.1nm(RMS)in polishing a concave with a diameter of160 mm.The proposed methods realize ultra-high precision polishing for spherical surfaces and aspherical surfaces,and they are also suitable for other contact small tool computer controlled polishing.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2015年第8期2220-2228,共9页 Optics and Precision Engineering
基金 国家科技重大专项资助项目(No.2009ZX02205)
关键词 光学加工 气囊抛光 运动精度 球面抛光 平面抛光 optical manufacture bonnet polishing motion precision sphere polishing flat polishing
  • 相关文献

参考文献28

  • 1师途,杨甬英,张磊,刘东.非球面光学元件的面形检测技术[J].中国光学,2014,7(1):26-46. 被引量:70
  • 2李锐钢,郑立功,张峰,薛红梅,张学军.大口径高陡度离轴非球面精磨阶段的数控加工[J].光学精密工程,2007,15(5):633-639. 被引量:19
  • 3王孝坤,王丽辉,邓伟杰,郑立功.用非零位补偿法检测大口径非球面反射镜[J].光学精密工程,2011,19(3):520-528. 被引量:15
  • 4KERKHOF M. Full optical column characterization of DUV lithographic projection tools [J]. Proc. of SPIE, 2004, 5377: 1960-1970.
  • 5KAMEYAMA M. Immersion and 32 nm lithogra- phy=Now and future [J]. Proc. of" SPIE, 2007, 6724:0277786X1-6.
  • 6WE1SER M. Ion beam figuring for lithography op- tics [J]. Nuclear Instruments and Methods in Physics Research B, 2009,269(8-9) : 1390-1393.
  • 7GARREIS R. Catadioptric optics enabling ultra- high NA lithography[C]. Selete and Sematech. Hyper-NA Session. 3rd International Symposium on Immersion Lithography, K yoto,2006 : 34-35.
  • 8ZEISS C. Very high aperture projection objective, US: 7339743[P2. 2005-06-30.
  • 9JONES R A. Rapid optical fabrication with com- puter-controlled optical surfacing[J]. Opt. Eng. , 1991, 30(11): 1962-1969.
  • 10LAGUARTA F, LUPON N, VEGA F, et al.. Laser application for optical glass polishing EC]. SPIE, 1996, 2775: 603-612.

二级参考文献181

共引文献240

同被引文献120

引证文献9

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部