期刊文献+

扭曲尾翼弹箭的马格努斯数值研究 被引量:7

Numerical prediction of the Magnus effect for twist fin swept flight projectile
下载PDF
导出
摘要 为提升掠飞攻顶弹箭较高转速下的飞行稳定性,运用数值计算方法研究了弹体-扭曲尾翼组合体在飞行过程中的马格努斯效应气动机理,并应用标准尾翼弹(BFM)模型的实验数据对数值方法进行了验证。分别研究了带有平板尾翼和扭曲尾翼弹体模型的马格努斯力和力矩随攻角的变化规律,并针对弹体弹翼组合体产生马格努斯效应的机理深入分析。结果表明,扭曲尾翼可有效改善翼面的压力分布,并降低弹体对翼面马格努斯效应的干扰,在大攻角时其表现更胜一筹;弹体所受马格努斯力较大,主要集中在受到涡对称畸变的尾锥部;尾翼主要由于弹体干扰以及几何外形的影响马格努斯力集中在尾部,两者产生的马格努斯力矩数值相差不大,但方向相反。 In order to improve flight stability of swept flight assault roof( SFAR) projectile under high rotation speed,Magnus effect pneumatic mechanism of projectile bodies-twist fin combination in flight was studied by using numerical method and the numerical method was validated by using experimental data of BFM model. On the basis of using standard tail experimental data to validate the numerical method,the variation of Magnus effect with the changing rule of attack angle of flat tail and twist tail projectile model was studied. In view of the projectile wing assembly,Magnus effect mechanism was analyzed thoroughly. The results show that twist fin can effectively improve the pressure distribution of wing surface and reduce Magnus effect interference of projectile bodies to wing surface,especially for big attack angle; larger projectile body Magnus force is mainly focused on coccygeal vertebra which is distorted of the vortex symmetry closed to centroid; Due to projectile interference and geometric profile effect,empennage lateral force is mainly concentrated on tail. The values of torgue are not much different from each other,while the directions are quite the contrary.
出处 《固体火箭技术》 EI CAS CSCD 北大核心 2015年第4期465-471,共7页 Journal of Solid Rocket Technology
基金 国家自然科学基金(11372136) 国家部委资助项目
关键词 流体力学 扭曲尾翼 旋转尾翼弹丸 马格努斯效应 数值仿真 fluid mechanics twist fin rotate finned projectiles Magnus effect numerical simulation
  • 引文网络
  • 相关文献

参考文献15

  • 1Megson, Thomas H.Aircraft structures for engineering students[ M]. Access Online via Elsevier, 2012.
  • 2胡志鹏,刘荣忠,郭锐.两种典型尾翼形状对无伞末敏弹气动特性的影响[J].南京理工大学学报,2012,36(5):739-744. 被引量:16
  • 3赵博博,刘荣忠,郭锐,袁军,张俊.扭曲尾翼飞行器的气动特性[J].国防科技大学学报,2014,36(3):19-24. 被引量:8
  • 4Oh S Y, Kim S C, Lee D K, et al. Magnus and spin-damping measurements of a spinning projectile using design of experiments[J]. Journal of Spacecraft and Rockets, 2010, 47 (6) : 974-980.
  • 5Schlicbting H. Boundary-layer theory [ M ]. McGraw-hill Book Company, 1979.
  • 6Morote J, Llano G. Prediction of nonlinear rolling and magnus coefficients of cruciform-finned missiles [ J ]. Journal of Aircraft, 2010, 47(4): 1413-1425.
  • 7Arnan Seginer, Izhak Rosenwasser. Magnus effects on spin- ning transonic missiles[R]. AIAA 83-246.
  • 8Jenke L M. Experimental roll-damping magnus, and static stability characteristics of two slender missile configurations at high angles of attack (0 to 90 deg) and Mach numbers 0.2 through 2.5[ R]. AEDC-TR 76-58.
  • 9Sturek W B, Dwyer H A, Kayser L D. Computations of magnus effects for a yawed, spinning body of revolution [J]. AIAA Journal, 1978, 16(7) : 687-692.
  • 10Sahu J. Numerical computations of dynamic derivatives of a finned projectile using a time accurate CFD method [ R ]. AIAA 2007.

二级参考文献36

  • 1杨晓辉,王承尧.飞行器栅格翼三维复杂流场的气动力计算[J].国防科技大学学报,1996,18(3):1-4. 被引量:6
  • 2Agarwal R K, Deese J E. Transonic Wing-body Calculations Using Euler Equations[C]. MAA - 83 - 0501, 1983.
  • 3Chen J P, Ghosh A R, Sreenivas K, Whitfield D L. Comparison of Computations Using Navier-Stokes Equations in Rotating and Fixed Coordinates for Flow through Turbomachinery[C]. AIAA - 97 - 0878, 1997.
  • 4Rieger H, Jarnson A. Solution of Steady Thrte-dimensional Compressible Elder and Navier-Stokes Equations by an Implicit LU Scheme[C].MAA - 88 - 619, 1988.
  • 5Jameson A, Yoon S. LU Implicit Schemes with Multiple Grids for Euler Equations[C]. AIAA - 86 - 105, 1986.
  • 6Baldwin B S, Lomax H. Thin Layer Approximation and Algebraic Model for Separated Turbulent Flows[C]. AIAA - 78 - 257,1978.
  • 7Paul Weinacht, Bernard Guidos J, Walter Sturek B, Betty Ann Hldes. PNS Computations for Spinning Shell at Moderate Angles of Attack and for Long L/D Finned Projectiles[C]. ADA169531, 1986.
  • 8Steger J L, Nietubicz C J, Heavey K R. A General Curvilinear Grid Generation Program for Projectile Configurations[R]. ADA107334,October 1981.
  • 9Karolyn Krlal S, Leonard Macalllter C. Aerodynamic Properties of a Family of Shell of Similar Shape - 105mm XM380E5, XM380E6,T388 and 155mm T387[R]. AD866610, February 1970.
  • 10Charles Nietubicz J and Klaus Opalka O. Supersonic Wind Tunnel Measurements of Static and Magnus Aerodynamic Coefficients for Projectile Shapes With Tangent and Secant Oglve Neses[R]. ADA083297, February 1980.

共引文献40

同被引文献68

引证文献7

二级引证文献16

;
使用帮助 返回顶部