摘要
目的:我国药品不良反应自发呈报系统报告呈逐年增长趋势,由不相称测定分析得到的药品不良反应组合数也较多,不利于人工进行信号的判断以及强信号的及时发现。因此,为研究拟利用系统学知识构建一种快速识别不良反应强信号的方法。方法:本研究根据统计学原理,结合压缩估计(α=0.5),将ROR、PRR、IC三种信号检测方法不相称测定值进行强度分级,为之后进行人工筛选、药品风险管理、评价及决策提供依据。结果:ROR、PRR、IC三种方法压缩估计之后强信号阈值分别为12.84、11.67、3.83。结论:该结果能较好地用于检测强信号,将被运用至国家药品不良反应监测中心新版信号检测系统中。
Objective: In recent years, the number of spontaneous reports about adverse drug reaction in China has grown rapidly. It is difficult to judge a signal by manual screening after disproportionality analysis because of a large number of potential signals. Therefore, our study aimed to identify the strong ADR signals quickly by statistical knowledge. Methods:Based on statistical theory, signals inentisy calculated by modified ROR, PRR and IC with shrinkage estimation (a =0.5 ) was classify. The classification of signal intensity could provide the evidence for artificial screening, risk man- agement and drug evaluation. Results :The threshold of strong signal by modified ROR, PRR and IC with shrinkage estima- tion was 12.84, 11.67, 3.83, respectively. Conclusion:The results will be applied to the new version of the national ad- verse drug reaction monitoring system.
出处
《药物流行病学杂志》
CAS
2015年第8期466-469,共4页
Chinese Journal of Pharmacoepidemiology
基金
国家自然科学基金项目(编号:.81202285
编号:.81373105)
上海市自然科学基金(编号:12ZR1453700)
上海市公共卫生重点学科(编号:12GWZX0602)
上海市领军人才计划(编号:022)
上海市卫生和计划生育委员会科研课题(编号:201440379)
罗氏(中国)投资有限公司提供经费资助
关键词
不相称性测定分析
压缩估计
强度分级
Disproportionality analysis
Shrinkage estimation
Signal intensity