摘要
对现代汉语VN1N2序列的结构进行了分类并统计出各小类在语料中所占的比例。使用规则与统计相结合的方法,让计算机自动定位支配型VN1N2结构中V的语义指向。具体方法是:先根据N1与N2的是否属于相同语义类,把支配型VN1N2结构分成两类;再分别使用规则和统计模型对两种类型的VN1N2结构进行不同的处理;最终设计出相应的计算机软件开发算法并画出了程序设计的流程图。
We classified the structure of VN1N2 in the modern Chinese, and calculated the proportion of each small class in the corpus. Based on rules and statistics, the computer can find the location of V's semantic orientation in the verb dominating structure of VN1N2 automatically. The specific method is: first, divide the verb dominating structure of VN1N2 into two categories according to whether the N1 and N2 belong to the same semantic category; and then analyze the two different categories by using the rules and statistical method; in the end, design corresponding algorithm of the computer software and draw its flow chart.
出处
《阜阳师范学院学报(社会科学版)》
2015年第4期53-56,共4页
Journal of Fuyang Normal University:Social Science Edition
基金
2011年度教育部人文社会科学研究青年基金项目"基于词性标注的现代汉语兼语式自动识别研究"(11YJCZH035)
阜阳师范学院人文社会科学研究重点项目"现代汉语兼语结构的机器探测"(2010FSSK02ZD)
关键词
VN1N2结构
语义指向
机器定位
structure of VN1N2
semantic orientation
computer positioning