期刊文献+

基于归一化标量权重映射与融合金字塔的彩图对比度增强算法 被引量:2

Image contrast enhancement algorithm based on normalized scalar weight map coupled fusion pyramid
下载PDF
导出
摘要 为了解决当前对比度增强算法在图像纹理或高信号活动区域易出现颜色改变以及过度增强,且难以兼顾图像全局内容增强与局部细节增强等不足,提出了基于归一化标量权重映射与融合金字塔的图像对比度增强算法。基于2D方向偏导,定义对比度与亮度的度量模型,并以此构造标量权重映射模型;引入拉普拉斯金字塔分解机制得到图像的层次结构,再计算其权重映射的高斯金字塔;定义这两个金字塔的融合规则,得到融合金字塔;在图像度量模型与权重映射模型的引导下,利用融合金字塔完成图像重构。实验结果表明,与当前对比度增强算法相比,该算法的对比度增强质量最佳,失真度较小,没有影响颜色平衡,消除了过渡增强与人工饱和度的引入。该算法能够较好地增强彩图对比度。 In order to solve these defects such as color change and over enhancement in the image texture or high signal activity area,as well as can not be both global content enhancement and local details enhancement by the current contrast enhancement algorithm,this paper proposed the image contrast enhancement algorithm based on normalized scalar weight map coupled fusion pyramid. It used the 2D direction of partial derivative,and defined the contrast and brightness metric model; and constructed the scalar weight map by these two models. Then it introduced the Laplacian pyramid decomposition mechanism to obtain the hierarchical structure of image; and embedded Gauss pyramid decomposition to produce the Gaussian pyramid of weight mapping. By defining fusion rules of the two pyramids,it got the fusion pyramid. Finally,by the fusion pyramid under the guide of image measurement and weight mapping model,it finished the image reconstruction. Experiments results show that the contrast enhancement quality of this algorithm is best to eliminate the introduction of transition enhancement and artificial saturation,as well as not affect the color balance comparison with current contrast enhancement algorithm.
出处 《计算机应用研究》 CSCD 北大核心 2015年第10期3187-3190,共4页 Application Research of Computers
基金 内蒙古自治区高等教育科学研究项目(NJZY13277) 内蒙古自治区高等学校科学研究项目(NJSY14302)
关键词 对比度增强 标量权重映射 融合金字塔 拉普拉斯金字塔分解 高斯金字塔分解 contrast enhancement scalar weight map fusion pyramid Laplacian pyramid decomposition Gaussian pyramid decomposition
  • 相关文献

参考文献14

  • 1Lee C H,Shih J L, Lien C C. Adaptive multiscale retinex for imagecontrast enhancement [ C ] //Proc of International Conference on Signal-Image Technology & Internet-based Systems. 2013 : 43-50.
  • 2Li Ce, Zhou Yanna, Ouyang Chengsu. A novel method of image en-hancement via multi-scale fuzzy membership [C]//2013 年中国智能自动化学术会议论文集(第二分册).2013: 583-590.
  • 3De Araujo A F,CE Constantinou. New artificial life model for imageenhancement [J]. Expert Systems with Applications, 2014,41(13): 5892-5906.
  • 4单子力,谷宏志,陈金勇,王超.基于物理散射模型的全极化SAR图像增强滤波算法[J].计算机应用研究,2013,30(10):3152-3154. 被引量:2
  • 5Zuo Chao, Chen Qian, Sui Xiubao. Range limited bi-histogramequalization for image contrast enhancement [ J]. Optik: Internatio-nal Journal for Light and Electron Optics,2013,124(5) : 425-431.
  • 6万辉.一种基于最小二乘支持向量机的图像增强算法[J].重庆理工大学学报(自然科学),2011,25(6):53-57. 被引量:14
  • 7Kim K, Han Y, Hahn H. Contrast enhancement scheme integratingglobal and local contrast equalization approaches [ J ]. Internet-based System, 2007 , 56(8) : 493-500.
  • 8Ekinci Y L, Ertekin C,Vigitba§ E. On the effectiveness of directio-nal derivative based filters on gravity anomalies for source edge ap-proximation :synthetic simulations and a case study from the aegeangraben system [ J ]. Journal of Geophysics and Engineering,2013,10(3) : 1126-1132.
  • 9Yang Jian,Liu Chengjun, Zhang Lei. Color space normalization: en-hancing the discriminating power of color spaces for face recognition[J]. Pattern Recognition, 2010 , 43(4) : 1454-1466.
  • 10Jain A, Sharma S. Entropy enhancement using image fusion tech-niques based on Laplacian and Gaussian pyramid decomposition [ J].International Journal of Engineering Innovations and Research,2013, 2(3): 273-276.

二级参考文献23

共引文献14

同被引文献13

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部