期刊文献+

多分形波动率预测模型及其MCS检验 被引量:27

Multi-fractal volatility forecasting model and its MCS test
下载PDF
导出
摘要 以上证综指的5 min高频数据为例,在已有的多分形波动率(multifractal volatility)测度方法基础上,提出了新的波动率测度方法及模型.运用滚动时间窗的样本外预测技术以及比SPA检验更具优势的"模型信度设定检验"(model confidence set,MCS),对比了新的波动率测度模型和主流的GARCH族以及已实现波动率(realized volatility)模型的预测精度.实证结果显示:不论是短记忆模型还是长记忆模型,多分形波动率模型的预测精度明显优于GARCH族模型,且长记忆模型的预测能力要好于短记忆模型.同时,在多数损失函数下,新提出的多分形波动率测度方法及其动力学模型的预测效果都是最优的. This paper introduces a new volatility measure and constructs its model based on multifractal volatil- ity method. Taking 5-minute high frequency data of the Shanghai Composite Index as an example, and applying the out-of-sample rolling time window forecasting combined with Model Confidence Set which is proved superior to SPA test, this paper compares the empirical performance of the new model and those of the GARCH- type and Realized volatility (RV) models. The empirical results show that the forecasting accuracy of the mul- tifractal volatility measure model in the short term as well as in the long term are better than the GARCH-type and RV models. Moreover, the forecasting models in the long term perform better than those in the short term. The performance in most loss function of the new method based on muhifractal volatility measure is superior to other forecasting models.
出处 《管理科学学报》 CSSCI 北大核心 2015年第8期61-72,共12页 Journal of Management Sciences in China
基金 国家自然科学基金资助项目(71071131 71371157) 高等学校博士学科点专项科研基金资助项目(20120184110020) 教育部人文社科基金规划资助项目(14YJC790073) 四川省科技青年基金资助项目(2015JQO010)
关键词 多分形波动率 GARCH族模型 已实现波动率模型 滚动预测 MCS检验 multifractal volatility GARCH-type models realized volatility model rolling forecasting MCS test
  • 引文网络
  • 相关文献

参考文献38

  • 1Cao G X, Xu L B, Cao J. Muhifractal detrended cross-correlations between the Chinese exchange market and stock market [J]. Physica A, 2012, 391(20) ~ 4855 -4866.
  • 2Wang Y D, Wei Y, Wu C F. Cross-correlations between Chinese A-share and B-share markets[J]. Physica A, 2010, 389 (23) : 5468 -5478.
  • 3Wang Y D, Liu L, Gu R B. Analysis of efficiency for Shenzhen stock market based on muhifractal detrended fluctuation a- nalysis [ J ]. International Review of Financial Analysis, 2009, 18 (5) : 271 - 276.
  • 4Jiang Z Q, Zhou W X. Muhifractal analysis of Chinese stock volatilities based on the partition ruction approach[ J]. Physiea A, 2008, 387(19): 4881 -4888.
  • 5Zunino L, Tabak B M, Figliola A, et al. A muhifractal approach for stock market inefficiency[ J ] . Physiea A, 2008, 387 (26) : 6558 -6566.
  • 6Mandelbrot B B. Fractals and Scaling in Finance[ M]. New York: Springer, 1997.
  • 7Mandelbrot B B. A multifraetal walk down Wall Street[J]. Scientific American, 1999, 280(2) : 70 -73.
  • 8POOh S H,Granger C W J. Forecasting volatility in financial markets: A review[J]. Journal of Economic Literature, 2003, 41(2) : 478 -539.
  • 9魏宇.金融市场的多分形波动率测度、模型及其SPA检验[J].管理科学学报,2009,12(5):88-99. 被引量:28
  • 10王鹏,魏宇,王建琼.基于多分形波动率测度的权证定价方法研究[J].管理科学,2009,22(2):106-113. 被引量:3

二级参考文献210

共引文献146

同被引文献236

引证文献27

二级引证文献123

;
使用帮助 返回顶部