期刊文献+

基于互信息的PCA方法及其在过程监测中的应用 被引量:26

Mutual information based PCA algorithm with application in process monitoring
下载PDF
导出
摘要 主元分析(PCA)是一种经典的特征提取方法,已被广泛用于多变量统计过程监测,其算法的本质在于提取过程数据各变量之间的相关性。然而,传统PCA算法中定义的相关性矩阵局限于计算变量间的线性关系,无法衡量两个变量间相互依赖的强弱程度。为此,提出一种新的基于互信息的PCA方法(MIPCA)并将之应用于过程监测。与传统PCA所不同的是,MIPCA通过计算两两变量间的互信息来定义相关性,将原始相关性矩阵取而代之为互信息矩阵,并利用该互信息矩阵的特征向量实现对过程数据的特征提取。在此基础上,可以建立相应的统计监测模型。最后,通过实例验证MIPCA用于过程监测的可行性和有效性。 Principal component analysis (P monitoring CA) is a classical algorithm for feature extraction and has been widely used in multivariate statistical process. The essence of the PCA algorithm is to extract the correlation between process variables. However, the correlation matrix defined in the traditional PCA algorithm is limited to consider the linear relationship between variables, which cannot be employed to analyze the mutual dependence between two measured variables. With recognition of this lack, a novel mutual information based PCA (MIPCA) method is proposed for process monitoring. Distinct from the traditional PCA, MIPCA defines the relationship between variables by calculating the mutual information, and the original correlation matrix is replaced by the resulting mutual information matrix. The eigenvectors of the mutual information matrix can thus be utilized as the directions of feature extraction. On the basis of MIPCA, a statistical process monitoring model can then be constructed. Finally, the feasibility and effectiveness of the MIPCA-based monitoring method are validated by a well-known chemical process.
出处 《化工学报》 EI CAS CSCD 北大核心 2015年第10期4101-4106,共6页 CIESC Journal
基金 浙江省自然科学基金项目(LY14F030004) 浙江省科技厅公益项目(2015C31017)~~
关键词 主元分析 数值分析 过程系统 互信息 故障检测 统计过程监测 principal component analysis numerical analysis process systems mutual information fault detection statistical process monitoring
  • 相关文献

参考文献23

  • 1Qin S J.Statistical process monitoring: basics and beyond [J].Journal of Chemometrics,2003,17 (7/8): 480-502.
  • 2Ge Z,Song Z,Gao F.Review of recent research on data-based process monitoring [J].Industrial & Engineering Chemistry Research,2013,52 (10): 3543-3562.
  • 3Qin S J.Survey on data-driven industrial process monitoring and diagnosis [J].Annual Reviews in Control,2012,36 (2): 220-234.
  • 4Fan J,Wang Y.Fault detection and diagnosis of non-linear non-Gaussian dynamic processes using kernel dynamic independent component analysis [J].Information Sciences,2014,259: 369-379.
  • 5范雪莉,冯海泓,原猛.基于互信息的主成分分析特征选择算法[J].控制与决策,2013,28(6):915-919. 被引量:105
  • 6Lee J M,Yoo C K,Choi S W,Vanrolleghem P A,Lee I B.Nonlinear process monitoring using kernel principal component analysis [J].Chemical Engineering Science,2004,59 (1): 223-234.
  • 7Tong C,Song Y,Yan X.Distributed statistical process monitoring based on four-subspace construction and Bayesian inference [J].Industrial & Engineering Chemistry Research,2013,52 (29): 9897-9907.
  • 8Zhao C,Wang F,Zhang Y.Nonlinear process monitoring based on kernel dissimilarity analysis.Control Engineering Practice,2009,17 (1): 221-230.
  • 9Li W.Mutual information functions versus correlation functions [J].Journal of Statistical Physics,1990,60 (5/6): 823-837.
  • 10Kwak N,Choi C.Input feature selection for classification problems [J].IEEE Transactions on Neural Networks,2002,13 (1): 143-159.

二级参考文献27

  • 1赵忠盖,刘飞.因子分析及其在过程监控中的应用[J].化工学报,2007,58(4):970-974. 被引量:24
  • 2Chiang L H, Russell E L, Braatz R D. Fault Detection and Diagnosis in Industrial Systems. London: Springer- Verlag, 2001
  • 3Kim D, Lee I B. Process monitoring based on probabilistic PCA. Chemometrics and Intelligent Laboratory Systems, 2003, 67:109-123
  • 4Hyvarinen A, Oja E. Independent component analysis: algorithms and applications. Neural Network, 2000, 13: 411-430
  • 5Kano M, Tanaka S, Hasebe S, Hashimoto I, Ohno H. Monitoring independent components for fault detection. AIChEJournal, 2003, 49 (4): 969-976
  • 6Xie L, Wu J. Gobal optimal ICA and its application in MEG data analysis. Neurocomputing, 2006, 69:2438-2442
  • 7He Ning(何宁).Research on performance monitoring and fault diagnosis for process industry based on ICA PCA method[D]. Hangzhou: Zhejiang University, 2004: 31-54
  • 8Hyvarinen A. A fast fixed point algorithm for independent component analysis. Neural Computation, 1997, 9:1483-1492
  • 9Chen Q, Kruger U, Andrew T Y Leung. Regularised kernel density estimation for clustered process data. Control Engineering Practice, 2004, 12:267-274
  • 10Zhong Mingjun(钟明军).Some algorithms for independent component analysis and their application to fMRI data analysis [D]. Dalian: Dalian University of Technology, 2004: 31-42

共引文献131

同被引文献182

引证文献26

二级引证文献127

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部