期刊文献+

流固耦合作用下真实人体上呼吸道呼吸流涡结构演化的数值仿真 被引量:1

Numerical simulation on vortex evolution of airflow in realistic human upper respiratory tract under the effect of fluid-solid interaction
下载PDF
导出
摘要 通过构建真实人体上呼吸道三维规范模型,运用大涡模拟数值方法,对考虑流固耦合作用的低强度循环呼吸模式下人体上呼吸道内的呼吸流进行了数值仿真,研究分析了人体口喉模型及气管支气管内的气流涡结构及其演化过程。结果表明,循环吸气过程中,气流在口腔中部以及舌苔上部形成多个涡管,在声门部位形成强烈的射流,在气管前壁出现马蹄涡,到气管中部大尺度涡结构逐步消失,支气管中只剩下一系列小尺度涡结构;循环呼气过程中,气流在气管底部产生较为复杂的涡结构,随着气流在气管内的融合,涡强度逐步减弱,在咽喉后壁形成拱状涡,气流进入口腔后,涡结构破裂,涡量扩散,没有较大的涡结构产生。 The airflow in human upper respiratory tract was simulated by using large eddy simulation method with 3D standardized model of realistic human upper respiratory tract under the effect of fluid-solid interaction and cyclic respiratory pattern,and the vortex evolution of airflow in human mouth-throat as well as trachea and bronchi was analyzied.The results show that several vortex tubes are formed in the central of mouth and on the surface of tongue coating,a turbulence j et ej ected towards to the anterior wall of the trachea appears in the glottal regional,the horseshoe vortexe which is similar to horseshoe appears on the anterior wall of the trachea in the phase of inhalation;In the phase of exhalation,the complex vortex structure appears on the bottom of the trachea,the vorticity in the trachea decreases and only a stronger vortex tube extends along the trachea with the airflow streams converging, and arch vortex is formed on the posterior wall of throat,then the vortex structure breaks up and there is no big vortex structure in the mouth.
出处 《计算力学学报》 CAS CSCD 北大核心 2015年第4期537-543,578,共8页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(31070832)资助项目
关键词 人体上呼吸道 呼吸流 流固耦合作用 涡结构演化 数值仿真 human upper respiratory tract airflow fluid-solid interaction vortex evolution numerical simulation
  • 相关文献

参考文献14

二级参考文献82

  • 1孙秀珍,于驰,刘迎曦,于申,张军,苏英锋.人体上呼吸道三维有限元重建与流场数值模拟[J].航天医学与医学工程,2006,19(2):129-133. 被引量:23
  • 2张楚华,闻苏平,刘阳.人体呼吸道的二级及三级支气管内吸气流动的数值研究[J].生物医学工程学杂志,2006,23(4):748-752. 被引量:5
  • 3THEOLOGOS K N, MARKATOS N C. Advanced modeling of fluid catalytic cracking riser-type reactors[J]. AIChE Journal, 1993, 39(6): 1007-1017.
  • 4GAO Jin-sen, XU Chun-ming, LIN Shi-xiong, et al.Simulations of gas-liquid-solid 3-phase flow and reaction in FCC riser reactors[J]. AIChE Journal,2001,47 (3): 677-692.
  • 5ZHU J X, YU Z Q, JIN Y, et al. Cocurrent downflow circulating fluidized bed (downer) reactors-A state of the art review [J-]. The Canadian d of Chemical Engineering, 1995,73: 662-677.
  • 6YOSHIZAWA A, HORIUTI K. A statistically-derived subgrid-scale kinetic energy model for the large eddy simulation of turbulent flows[J]. Journal of the Physical Society of Japan, 1985, 54: 2834-2839.
  • 7MASAYOSHI O, NOBUYUKI S. Investigation for the one-equation-type subgrid model with eddyviscosity expression including the shear-damping effect [J]. JSME International Journal, Series B,1999,42:154-161.
  • 8CHORIN A J. Numerical solution of the navierstokes equations [J]. Mathematics of Computation,1968, 22:745-762.
  • 9DAI Y, KOBAYASHI T, TANIGUCHI N. Large eddy simulation of plane turbulent jet flow using a new outflow velocity boundary condition[J]. JSME International Journal, 1994,37: 242-253.
  • 10Pedley TJ. Pulmonary fluid dynamics [ J ]. Annual Reviews Fluid Mechanics, 1977,9 : 229 - 274.

共引文献36

同被引文献18

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部