期刊文献+

Neuman平均与算术平均、反调和平均的最佳不等式

Optimal Inequalities for the Neuman Mean in Terms of Arithmetic and Contraharmonic Means
原文传递
导出
摘要 给出了关于Neuman平均NQA(a,6),NQA(a,b)与算术平均A(a,b)和反调和平均C(a,b)的两个最佳双向不等式,所得结论加细了已知结果. In the article,we present the sharp upper and lower bounds for the Neuman means N_(QA)(a,b) and N_(AQ)(a,b) in terms of the arithmetic mean A(a,b) and contraharmonic mean C(a,b).The given results are the improvements of some known results.
出处 《数学的实践与认识》 北大核心 2015年第19期273-279,共7页 Mathematics in Practice and Theory
基金 浙江省自然科学基金(LY13A010004) 浙江省教育厅项目(Y201431915) 浙江广播电视大学科学研究课题(XKT-15G17)
关键词 Schwab-Borchardt平均 Neuman平均 算术平均 反调和平均 不等式 Schwab-Borchardt mean neuman mean arithmetic mean contraharmonic mean inqeuality.
  • 相关文献

参考文献17

  • 1Neuman E, and Skndor J. On the Schwab-Borchardt mean[J]. Mathematica Pannonica, 2003, 14(2) 253-266.
  • 2Neuman E, and S~ndor J. On the Schwab-Borchardt mean II[J]. Mathematica Pannonica, 2006 17(1): 49-59.
  • 3Neuman E. On some means derived from the Schwab-Borchardt mean[J]. Math Inequal, 2014, 8(1) 171-183.
  • 4Neuman E. On some means derived from the Schwab-Borchardt mean If [J]. J Math Inequal, 2014 8(2): 361-370.
  • 5Neuman E. On a new bivariate men[J]~: Aequat Math; 2014, 88(3): 277-289.
  • 6Seiffert H J. Aufgabe l~ 16[J]. Wurzel 29, 1995:221-222.
  • 7Chu Y M, Long B Y, Gong W M, Song Y Q. Sharp bounds for Seiffert and Neuman-Sandor means in terms of generalized logarithmic means[J]. J Inequal Appl, 20"13, 10(2013).
  • 8Chu Y M, and Qian W M. Refinements of bounds for Neuman means[J]. Abstr Appl Anal, 2004, Article ID 254132, 8 pages.
  • 9Qian W M, and Chu Y M. Optimal bounds for Neuman means in terms of geometric, arithmetic and quadratic means[J]. J Inequal Appl, 2014, 2014: 175.
  • 10He Z Y, Chu Y M, and Wang M K. Optimal Bounds for Neuman Means in Terms of Harmonic and Contra-harmonic Means[J]. J Appl Math, 2013, Article ID 807623, 4 pages.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部