期刊文献+

面向满意度预测的滑鼠行为量化分析方法 被引量:3

Satisfaction Prediction Oriented Quantitative Mouse Movement Analysis
下载PDF
导出
摘要 现有信息检索研究领域中,衡量知识学习质量和信息获取精度的核心标准是信息与用户需求的相关性(量化指标为相关度).然而,这一测度往往无法直观反映用户对信息伪反馈的"满意度".相比于多媒体(文字语言、图像、音频和视频)之间可测可量的相关度,由用户主观认知驱动的满意度往往无法通过直观的量化方法予以获取和测量.针对这一问题,文中提出一种基于鼠标滑动(Mouse Movement,简称"滑鼠")运动学规律的"满意度"量化分析和预测方法.该方法集中于人类肢体活动驱动下的滑鼠滑行轨迹分析,借助复杂滑行过程中滑鼠呈现出的动力学能量,间接预测人类思维活跃的程度,以此估计用户接触特定信息伪反馈时隐式反射出的满意度.实验验证,该方法能够有效辅助信息检索过程中的用户体验分析. In current study on Information Retrieval(IR),the determination of quality of knowledge learning and precision of information acquisition heavily depend on the relevance(quantity is named as relevance degree)between user's need and information.However,the quantity normally is incapable of reflecting the satisfactoriness degree of users to pseudo information feedback.Compared to the scalable relevance degree among multi-medias,such as linguistic texts,images,audios and videos,the satisfactoriness,which is triggered and driven by human's subjective recognition,is not easily reachable.In particular,it is difficult to directly measure the satisfactoriness degree.To solve the problem,the paper proposes a Mouse-Movement-Law based on satisfactoriness analysis and measurement method.The method concentrates on trajectory analysis of mouse movement that is driven by human's physical activity.More importantly,the method detects the impetus of mouse movement(i.e.,momentum)during the course of sliding,by which it indirectly reflects the activity degree of the mind.The quantity of momentum,accordingly,is favorable to measurement of satisfactoriness toward pseudo information feedback.Experiments show that the method is effective in supporting analysis of user experience in the process of IR.
出处 《计算机学报》 EI CSCD 北大核心 2015年第10期2064-2075,共12页 Chinese Journal of Computers
基金 国家自然科学基金(61373097 61272259 61272260)资助~~
关键词 信息检索 满意度 滑鼠行为 滑鼠能量 社交网络 社会计算 information retrieval satisfaction mouse movement energy of mouse movement social networks social computing
  • 相关文献

参考文献27

  • 1Manning C D, Raghavan P, Schutze H. Introduction to Information Retrieval. Cambridge: Cambridge University Press, 2008.
  • 2Jansen B J. The effect of query complexity on Web searching results. Information Research, 2000, 6(1): 6-1.
  • 3Liu Run-Ran, Jia Chun-Xiao, Zhou Tao, et al. Personal recommendation via modified collaborative filtering. Physical A: Statistical Mechanics and its Applications, 2009, 388(4) :462-468.
  • 4Hillard D, Sehroedl S, Manavoglu E, et al. Improving ad relevance in sponsored seareh//Proceedings of the 3rd ACM International Conference on Web Search and Data Mining. Banff, Canada, 2010: 361-370.
  • 5Cao Z, Qin T, Liu T Y, et al. Learning to rank: From pairwise approach to listwise approach//Proceedings of the 24th International Conference on Machine Learning. Banff, Canada, 2007: 129-136.
  • 6Qiu Y, Frei H P. Concept based query expansion// Proceedings of the 16th Annual International ACIVI SIGIR Conference on Research and Development in Information Retrieval. Pittsburgh, USA, 1993:160-169.
  • 7Hussein S E, Granat M H. Intention detection using a neuro- fuzzy EMG classifier. IEEE Engineering in Medicine and Biology Magazine, 2002, 21(6): 123-129.
  • 8De Gemmis M, Iaquinta L, Lops P, et al. Preference learn- ing in recommender systems//Proceedings of the ECML/ KDPP-09 Workshop on Preference Learning (PL 09). Bled, Slovenia, 2009:41-$6.
  • 9洪宇,康杨杨,姚建民,朱巧明,周国栋.一种新型最优检索结果的发现与论证[J].计算机学报,2013,36(3):643-653. 被引量:2
  • 10Commentz-Walter B. A String Matching Algorithm Fast on the Average. Berlin: Springer Berlin Heidelberg, 1979.

二级参考文献54

  • 1陈庆伟.测谎技术的演变发展及地位[J].山东警察学院学报,2003,15(2):37-39. 被引量:7
  • 2曹晓宝.简论测谎技术[J].铁道警官高等专科学校学报,2004,14(3):82-86. 被引量:3
  • 3张卫东.扣带皮层的生理心理机能[J].心理科学,2000,23(6):720-724. 被引量:4
  • 4高文斌,罗跃嘉.视觉空间注意的事件相关电位研究[J].心理科学进展,2002,10(4):361-366. 被引量:6
  • 5曹晓宝.论测谎工具的历史演变[J].贵州警官职业学院学报,2006,18(2):69-72. 被引量:7
  • 6周绍慈.边缘系统与动机及情绪活动[A].见:韩济生主编.神经科学原理[C].北京:北京医科大学出版社,1999.892~902.
  • 7Rajkowska G,Halaris A,Selemon LD.Reductions in neuronal and glial density characterize the dorsolateral prefrontal cortex in bipolar disorder. Biol Psychiatry 2001;49(9):741-52.
  • 8Phillips ML, Drevets WC,Rauch SL,et al.Neurobiology of emotion perception Ⅱ: Implications for major psychiatric disorders.Biol Psychiatry2003;54(5):515-28.
  • 9Levesque J,Eugene F,Joanette Y,et al.Neural circuitry underlying voluntary suppression of sadness. Biol Psychiatry 2003;53(6):502-10.
  • 10Sheline YI,Barch DM,Donnelly JM,et al.Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment: an fMRI study. Biol Psychiatry 2001;50(9):651-8.

共引文献12

同被引文献49

引证文献3

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部