期刊文献+

基于YCbCr颜色空间的叶片阴影检测与去除 被引量:7

Shadow Detection and Removal of Blade Based on YCbCr Color Space
下载PDF
导出
摘要 自然环境下获得的植物叶片图像往往由于阴影的存在而严重影响植物叶面特征的提取,为了解决这个问题,提出了一种基于YCbCr颜色空间的阴影的检测与去除方法.首先在YCbCr颜色空间中计算Y通道强度,采用阈值法检测阴影区域.然后在YCbCr颜色空间下根据光照模型对阴影区每个像素进行光照恢复.最后转化到RGB颜色空间下.相对于直接在RGB空间进行的阴影去除,该方法减弱阴影区的边缘效应,使得去除阴影后的区域与非阴影区的颜色更加一致,恢复图像看上去更加自然. With the influence of shadow on plant leaf images in natural environment, extraction of foliar features will be seriously affected. Hence, this paper proposes a method of shadow detection and removal based on YCbCr color space. First, the intensity of channel Y in YCbCr color space is calculated and the shadow regions are detected by a threshold on the intensity. Then according to the shadow model, light restorations for each pixel in shadow regions are made and the results are finally transformed to the RGB color space. Compared with direct shadow removal in the RGB space, this method weakens the edge effect, thus making the color between the post removal shadow region and non shadow region more uniform and the restored images more natural.
出处 《计算机系统应用》 2015年第11期262-265,共4页 Computer Systems & Applications
关键词 阴影检测 YCBCR 阴影去除 shadow detection YCbCr shadow removal
  • 相关文献

参考文献9

  • 1冀荣华,祁力钧,傅泽田.机器视觉技术在精细农业中的研究进展[J].农机化研究,2007,29(11):1-5. 被引量:18
  • 2Arbel E,Hel-OR H.A novel approach for shadow removal based on intensity surface approximation[Thesis].Haifa:University of Haifa,2009:6-9.
  • 3Arbel E,Hel-OR H.Shadow removal using intensity surfaces and texture anchor point.IEEE Trans,on Pattern Analysis and Machine Intelligence,2011,33(6):1202-1216.
  • 4Yao K,Tian DS.Shadow removal from images using an improved single-scale retinex color restoration algorithm.International Joint Conference on Computational Sciences and Optimization.Sanya,Hainan.IEEE.2009,1.934-938.
  • 5孙静,田建东,唐延东.静态室内图像投影边缘检测方法研究.仪器仪表学报,2010,31(S2):28-31.
  • 6Lalonde JF,Efros A,Narasimhan S.Detecting ground shadows in outdoor consumer photographs.European Conference on Computer Vision.Heraklion,Crete,Greece.Springer.2010.322-335.
  • 7马文杰,贺立源,徐胜祥,陈杰,吴照辉.基于烤烟透射特征的烟叶图像分割研究[J].农业工程学报,2006,22(7):134-137. 被引量:15
  • 8GONZALEZRC,WOODSRE.数字图像处理.2版.阮秋琦,阮宇智,译.北京:电子工业出版社,2007:475-479,527-530.
  • 9Jyothirmai MSV,Srinivas K,Srinivasa VR.Enhancing shadow area using RGB color space.Journal of Computer Engineering.2012.24-28.

二级参考文献33

  • 1罗锡文,臧英,周志艳.精细农业中农情信息采集技术的研究进展[J].农业工程学报,2006,22(1):167-173. 被引量:118
  • 2张建平,吴守一,方如明.农产品质量的计算机辅助检验与分级(第Ⅰ报)烟叶外观品质特征的定量检验[J].农业工程学报,1996,12(3):158-162. 被引量:27
  • 3MacCormac J K M.On-line image processing for tobacco grading in Zimbabwe[J].IEEE,1993:327-331.
  • 4Zhang J,Sokhansanj S,Wu S,et al.A trainable grading system for tobacco leaves[J].Computers and Electronics in agriculture,1997,16 (3):231-244.
  • 5Domingo Mery,Franco Pedreschi.Segmentation of colour food images using a robust algorithm[J].Journal of Food Engineering,2005,66 (3):353-360.
  • 6Casady W. W, Singh N, Costello TA. Machine vision for measurement of rice canopy dimensions[J].Trans of the ASAE, 1996,39(5):1891- 1898.
  • 7Guyer D .E, G. E. Miles, M .M. Schreiber, et al. Machine vision and image processing for plant identification[J].Trans of the ASAE, 1986,29(6):1500-1507.
  • 8Woebbecke D .M , G .E. Meyer, K .Von Bargen, et al .Shape features for identifying young Weed susing image analysis[J].Transactions of the ASAE, 1995,38(1):271-281.
  • 9Tang L, L.F. Tian, B.L. Steward, et al. Texture -based weed classification using Gabor wavelets and neural network for real-time selectiveherbicideapplications[R].Toronto: Proceedings of the ASAE Annual International Meeting, 1999.
  • 10W.L. Felton, A.F. Doss and P.G.Nash. A Microprocessor Controlled Technology to Selectively Spot Spray Weeds[R]. ASAE. Joseph : Automated Agriculture for the 21^st Century, 1991:427-432.

共引文献33

同被引文献45

引证文献7

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部