期刊文献+

基于电阻抗频谱的乳腺组织分类 被引量:4

Breast tissue classification based on electrical impedance frequency spectrum
下载PDF
导出
摘要 针对乳腺癌早期辅助检测与诊断问题,提出一种改进的基于电阻抗频谱特性的乳腺组织分类算法。根据人体电阻抗特征数据特点,利用主成分分析法降低数据维数和去除噪声,然后采用支持向量机对数据进行分类。由此结合主成分分析和支持向量机,得到改进的分类算法。实验结果表明,改进的分类算法可以有效地对乳腺组织进行分类,准确率达80%以上,特别对乳腺癌和脂肪组织的分类准确率超高95%。 A method about the breast tissue classification is proposed based on the electrical impedance spectral characteristics with an aim for the early diagnosis problem of the breast disease. According to the characteristics of body electrical impedance data with the selection of the princi component analysis to reduce data dimensionality and noise removal, the breast tissue can pal be classified by the support vector machine classifier. Experiment results show that this method can classify the breast tissue effectively with an accuracy of more than 80%. Particularly, the classification efficiency for breast cancer and fatty tissue are more than 95 %.
出处 《西安邮电大学学报》 2015年第6期98-101,共4页 Journal of Xi’an University of Posts and Telecommunications
基金 陕西省教育厅专项科研计划资助项目(14JK1658)
关键词 电阻抗 乳腺组织 支持向量机 主成分分析 频谱 electrical impedance, breast tissue, support vector machine, principal component analysis, frequency spectrum
  • 相关文献

参考文献9

二级参考文献92

  • 1卢光跃,邵朝.一种新的复数图像压缩算法[J].西安邮电学院学报,2001,6(1):32-36. 被引量:1
  • 2[1]S.S.Keerthi,S.K.Shevade,C.Bhattachayya et al.Improvements to Platt's SMO Algorithm for SVM Classifier Design[J].Neural Computation,2001.
  • 3[2]E.Osuna.An Improved Training Algorithm for Support Vector Machines[J].InProc.IEEE Neural Networks in Signal Processing'97,1997.
  • 4[3]T.Joachims.Making Large-scale Support Vector Machine Learning Practical[A].Advances in Kernel Methods-Support Vector Learning,MIT Press,1998.
  • 5[4]John C.Platt.Fast Training of Support Vector Machines Using Sequential Mini mal Optimization[A].Advances in Kernel Method -Support Vector Learning.MIT press,1999.
  • 6[6]Fan Rong-En,Chen Pai-Hsuen,Lin Chih-Jen.Working Set Selection Using Second Order Information for Training Support Vector Machines[J].Journal of Machine Learning Research,2005.
  • 7Chaudhary SS, Mishra RK, Swarup A, et al. Dielectric properties of normal and malignant human breast tissues at radiowave and microwave frequencies[J]. Indian J Biochem Biophys, 1984, 21: 76-79.
  • 8Campbell AM, Land DV. Dielectric properties of female breast tissue measured in vitro at 3.2 GHz[J]. Phys Med Biol, 1992, 37: 193-210.
  • 9Jossinet J. Variability of impedivity in normal and pathological breast tissue [J]. Med Biol Eng Comput, 1996, 34(5): 346-350.
  • 10Jossinet J. The impedivity of freshly excised human breast tissue [J].Physiol Meas, 1998, 19(1): 61-75.

共引文献33

同被引文献32

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部