期刊文献+

改进的基于Parzen窗算法的SAR图像目标检测 被引量:4

Improved Parzen Window Based Ship Detection Algorithm in SAR Images
下载PDF
导出
摘要 传统的Parzen窗检测算法假设目标占整个背景中较小的一部分,将SAR图像中的所有像素用于估计杂波概率密度函数,容易造成检测阈值的增大从而对不太明显的SAR图像舰船目标产生漏检。对此,提出了一种改进的Parzen窗检测算法,该算法通过自适应地设置目标窗口,将潜在的目标从检测图像中剔除,对剔除后的杂波背景采用Parzen窗进行非参数化的杂波模型估计,进而确定检测阈值,完成目标的检测。相比传统的Parzen窗检测算法,提出的SAR图像舰船目标检测算法减少了漏检数量,改善了检测性能。实测SAR图像的检测结果表明了该方法的有效性。 The classical Parzen algorithmis is based on the assumption that the targets occupy a small part of the SAR image and uses all pixels of the SAR image to estimate the probability density function of the clutter background. This method results in the elevation of the detection threshold, and then it is possible to miss targets that are less obvious. In order to overcome this problem,we proposed an improved Parzen detection algorithm. The proposed algorithm adaptive- ly sets the target windows according to the size of the target and deletes the potential targets from the background. Then it estimates the clutter distribution based on Parzen window method. Finally,it determines the detection threshold for the target detection. Compared with the traditional Parzen detection method, the proposed algorithm decreases the number of missing target and also improves the detection performance. The detection results with the real SAR images verify the effectiveness of the algorithm.
出处 《计算机科学》 CSCD 北大核心 2015年第B11期151-154,共4页 Computer Science
关键词 SAR图像 舰船 检测 PARZEN窗 SAR image, Ship, Detection, Parzen windows
  • 相关文献

参考文献3

二级参考文献41

  • 1林宏津.合成孔径雷达图像目标检测与优化搜索[D].成都:四川大学,2005:14—18.
  • 2田巳睿,王超,张红.星载SAR舰船检测技术及其在海洋渔业监测中的应用[J].遥感技术与应用,2007,22(4):503-512. 被引量:13
  • 3Touzi R, Charbonneau F, Hawkins R K, et al. Ship-sea contrast optimization when using polarimetrie SARs [C]// Proceedings of International Geoscienee and Remote Sensing Symposium. Sydney, Australia: IEEE Press, 2001: 426- 428.
  • 4Novak L M, Sechtin M B, Cardullo M J. Studies of target detection algorithms that use polarimetric radar data [J]. IEEE Transactions on Aerospace and Electronic Systems, 1989, AES-25(2) : 150- 165.
  • 5Novak L M, Burl M C, Irving W W. Optimal polarimetric processing for enhanced target detection [J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(1): 234 - 244.
  • 6YANG Jian, DONG Guiwei, PENG Yingning, et al. Generalized optimization of polarimetric contrast enhancement [J]. IEEE Geoscience and Remote Sensing Letters, 2003, 1(3): 198-201.
  • 7AN Wentao, CUI Yi, YANG Jian. Three-component model-based decomposition for polarimetric SAR data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(6) :2732 - 2739.
  • 8Cloude S R, Pottier E. A review of target decomposition theorems in radar polarimetry [J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(2) : 498 - 518.
  • 9YANG Jian, PENG Yingning, LIN Shiming. Similarity between two scattering matrices [J]. Electronics Letters, 2001, 37(3): 193-194.
  • 10Cover T M, Thomas J A. Elements of information theory [M]. 2nd Ed. New York, USA: John Wiley & Sons, 2006.

共引文献22

同被引文献41

引证文献4

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部