期刊文献+

基于粒子群优化的小波神经网络的停车位数量短时预测 被引量:3

APPLICATION TECHNOLOGY OF PARKING PLACE NUMBERS SHORT-TERM PREDICTION BASED ON WNN OPTIMISED BY PSO AND ITS STUDY
下载PDF
导出
摘要 针对停车场有效停车位的短时间预测精度低的问题,首先提出基于梯度下降法的小波神经网络模型,并且用粒子群优化算法对小波神经网络的参数作进一步的优化。用天津站后广场地下停车场的历史数据进行实验,结果表明该模型能对短时间内有效停车位数进行较准确的预测,且用粒子群优化算法对小波神经网络的参数优化后预测的平均绝对误差减小了5.23,平均相对误差减小了2.11%,最大相对误差降低了10.39%。实验结果表明,该模型能较准确地预测短时间内停车位数量,且优化后预测精度得到了进一步的提高。 Aiming at the problem of low accuracy in short-term prediction on effective parking places in parking lot, first we proposed the gradient descent method-based wavelet neural network model, and used particle swarm optimisation to further optimise the parameters of WNN. The historical data of underground parking lot in Tianjin station rear plaza was used in the experiment, results showed that the proposed model was able to make rather,precise prediction on effective parking places in short term. Moreover, after optimising wavelet neural network with particle swarm optimisation, the average absolute error of prediction decreased 5.23, the average relative error decreased 2.11% , and the maximum relative error decreased 10.39%. Experimental result demonstrated that the model can more accurately predict the parking places in short term, and the optimised prediction accuracy gained further improvement.
出处 《计算机应用与软件》 CSCD 2015年第11期66-68,138,共4页 Computer Applications and Software
基金 天津市科技支撑计划重点项目(10zckfsf01100) 天津市科技型中小企业创新基金项目(13zxcxgx40400)
关键词 有效停车位 小波神经网络 梯度下降法 粒子群优化算法 Effective parking place Wavelet neural network (WNN) Gradient descent method Particle swarm optimisation (PSO)
  • 相关文献

参考文献10

  • 1Wang Zehe,Yi Jinggang,Liu Jiangtao. Study on the Control Strategy of Parking Guidance System[ C ]//International Conference on Service Sys- tems and Service Management, June 9 - 11,2007 China: Chengdu, 2007.
  • 2Caicedo Felix, Blazquezi Camla. Prediction of space availability in real time [ J ]. Expert Systems with Applications, 2012, 39 ( 8 ) : 7281 - 7290.
  • 3Liu Shixu, Guan Hongzhi. Unoccupied parking space prediction of cha- otic time series : Intelligent, Reliable[ C ]//Proceedings of the 10th In- ternational Conference of Chinese Transportation Professionals, August 4 - 8,2010. China: Beijing,2010.
  • 4Chen Qun, Yan Kefei. Parking space information prediction based on phrase construction and Elman neural network[ J]. Journal of Tongji U- niversity, 2007,35 (5) :607 - 611.
  • 5孙涌,崔志明.停车诱导系统中车位预测模型的研究[J].计算机应用与软件,2007,24(11):124-126. 被引量:6
  • 6] Yang Jun. A system framework of active parking guidance and informa- tion system:mceedings[ C ]//2010 WASE International Conference on Information Engineering, August 14 - 15,2010. China: Hebei ,2010.
  • 7余国强,韩国强.基于小波神经网络的短时交通流预测算法的研究[D].广州:华南理工大学,2012.
  • 8边海龙,陈光,杜天军.基于小波神经网络的时变谐波信号检测[J].中国电机工程学报,2008,28(7):104-109. 被引量:14
  • 9邓艾东,赵力,包永强.粒子群优化小波神经网络用于碰摩声发射源定位[J].中国电机工程学报,2009,29(32):83-87. 被引量:10
  • 10潘玉民,张晓宇,张全柱,薛鹏骞.基于量子粒子群优化的小波神经网络预测模型[J].信息与控制,2012,41(6):741-746. 被引量:11

二级参考文献40

共引文献39

同被引文献21

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部