期刊文献+

基于折射原理反向学习模型的改进粒子群算法 被引量:26

Improved Particle Swarm Optimization Algorithm Based on Opposite Learning of Refraction
下载PDF
导出
摘要 对于粒子群优化算法易陷入局部最优的缺陷,反向学习策略对其的改进取得了较好的效果.然而,反向学习策略需要结合其它策略来提高算法后期的全局搜索能力,针对此缺陷,根据光的折射原理对反向学习策略的反向过程进行改进,提出反向学习的统一算法模型及基于折射原理反向学习模型的改进粒子群算法.实验与分析表明,与其它基于反向学习的粒子群算法相比,该模型更有效地改进了所提算法的全局搜索能力,提高了种群的多样性,从而提高了算法的收敛速度以及优化精度. One of shortcomings found in the particle swarm optimization algorithm is that it is easy to fall into local optimum,and the opposite learning strategy has a good effect on the improvement of this shortcoming. However,to improve the global search ability by using the opposite learning strategy it is necessary that in the late algorithm other strategies are combined to opposite learning strategy. To overcome this shortcoming,this paper improves the opposite process of the opposite learning strategy according to the refraction principle of light,and proposes the unified model of opposite-based learning( UOBL) and the improved particle swarm optimization algorithm based on the opposite learning model of the principle of refraction( refr PSO). Experiment results and analysis showthat the model improves the global search ability of the refr PSO algorithm more effectively compared with other particle swarm algorithm based on opposite learning and the diversity of the population. Because of these improvements,the refr PSO enhances the convergence speed and the accuracy of optimization.
出处 《电子学报》 EI CAS CSCD 北大核心 2015年第11期2137-2144,共8页 Acta Electronica Sinica
基金 国家自然科学基金(No.61070008 No.70971043) 武汉大学软件工程国家重点实验室开放基金项目(No.SKLSE2012-09-19) 中央高校基本科研业务专项项目(No.2012211020205) 江西省教育厅科学技术项目(No.GJJ13729)
关键词 智能优化算法 粒子群优化算法 反向学习 折射原理 intelligent optimization particle swarm optimization opposite-based learning refraction principle
  • 相关文献

参考文献15

  • 1J.Kennedy,R C Eberhart.Particle swarm optimization. Proceedings of the IEEE International Joint Conference on Neural Networks[C]. IEEE,1995.1942-1948.
  • 2胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:336
  • 3Gandomi A H,Yun G J,Yang X S,et al.Chaos-enhanced accelerated particle swarm optimization[J]. Communications in Nonlinear Science and Numerical Simulation,2013,18(2):327-340.
  • 4Tizhoosh H.Opposition-based learning:A new scheme for machine intelligence. Proceedings of International Conference on Intelligent Agent,Web Technologies and Internet Commerce[C]. Vienna:IEEE,2005.695-701.
  • 5S Rahnamayan,H R Tizhoosh,M M A Salama.Opposition-based differential evolution algorithm. IEEE Congress on Evolutionary Computation[C]. Canada:IEEE,2006.2010-2017.
  • 6Wang H,Li H,Liu Y,et al.Opposition-based particle swarm algorithm with cauchy mutation. IEEE Congress on Evolutionary Computation[C]. Singapore:IEEE,2007.4750-4756.
  • 7Wang H,Wu Z J,Rahnamayan.Enhancing particle swarm optimization using generalized opposition-based learning[J]. Information Sciences,2011,181(20):4699-4714.
  • 8喻飞,李元香,魏波,徐星,赵志勇.透镜成像反学习策略在粒子群算法中的应用[J].电子学报,2014,42(2):230-235. 被引量:32
  • 9Griffiths,David J.Introduction to Electrodynamics(3rd Ed)[M]. Prentice Hall,1998.386-389.
  • 10周新宇,吴志健,王晖,李康顺,张浩宇.一种精英反向学习的粒子群优化算法[J].电子学报,2013,41(8):1647-1652. 被引量:91

二级参考文献20

  • 1赫然,王永吉,王青,周津慧,胡陈勇.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报,2005,16(12):2036-2044. 被引量:134
  • 2Kennedy J, Eberhart R C. Particle swarm optimization[ A]. Pro- ceedings of IEEE International Conference on Neural Networks [ C]. Perth, Australia, 1995.1942 - 1948.
  • 3Z Zheng,Hock Soon S, Jixiang S.A hybrid particle swarm op- timization with cooperative method for multi-object tracking [ A ]. Congress on Evolutionary Computation ( CEC' 2012 )[ C]. Washington, D C, USA: lEEr:. Press,2012.1 - 6.
  • 4G Yue-Jiao, Z Jun, H S Chang. An efficient resource allocation scheme using particle swarm optimization [ J ]. IEEF. Transac- tions on Evolutionary Computation, 2012,16 ( 6 ) : 801 - 816.
  • 5Tizhoosh H R. Opposition-based learning: A new scheme for machine intelligence[ A ]. Proceedings of International Confer- ence on the Computational Intelligence for Modelling, Control and Automation, 2005 and International Conference on Intelli- gent Agents, Web Technologies and Internet Commerce [ C ]. Washington, D C, USA: IEEE Press,2005.695 - 701.
  • 6Rahnamayan S, Tizhoosh H R, M M A Salama. Opposition- based differential evolution [ J ]. IEEE Transactions on Evolu- tionary Computation, 2008,12(1) :64 - 79.
  • 7H Lin, H Xing-shi. A Novel opposition-based particle swarm optimization for noisy problems [ A ]. Pree.edings of Interna- tional Conference on the Natural Computation[ C]. Piscataway:IEEE Press, 2007.624 - 629.
  • 8W Hui, L H hui, L Yong. Opposition-based particle swarm al- gorithm with cauchy mutation [ A ]. Congress on Evolutionary Computation (CEC' 2007 ) [ C ]. Washington, D C, USA: IEEE Press, 2007.4750 - 4756.
  • 9Wang H,Wu Z,Rahnarnayan S. Enhancing particle swarm op- timization using generalized oppositionbased leaming[ J]. Infor- marion Sciences, 2011,181(20) :4699 - 4714.
  • 10Wang H, Wu Z, Rahnamayan S. Diversity Analysis of Opposi- tion-Based Differential Evolution-an Experimental Study [ M ]. Advances in Computation and Intelligence, Springer Berlin Heidelberg,2010.95 - 102.

共引文献480

同被引文献210

引证文献26

二级引证文献181

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部