期刊文献+

Bifunctional catalysts of Co3O4@GCN tubular nanostructured (TNS) hybrids for oxygen and hydrogen evolution reactions 被引量:3

Bifunctional catalysts of Co3O4@GCN tubular nanostructured (TNS) hybrids for oxygen and hydrogen evolution reactions
原文传递
导出
摘要 Catalysts for oxygen and hydrogen evolution reactions (OER/HER) are at the heart of renewable green energy sources such as water splitting. Although incredible efforts have been made to develop efficient catalysts for OER and HER, great challenges still remain in the development of bifunctional catalysts. Here, we report a novel hybrid of Co3O4 embedded in tubular nanostructures of graphitic carbon nitride (GCN) and synthesized through a facile, large-scale chemical method at low temperature. Strong synergistic effects between Co3O4 and GCN resulted in excellent performance as a bifunctional catalyst for OER and HER. The high surface area, unique tubular nanostructure, and composition of the hybrid made all redox sites easily available for catalysis and provided faster ionic and electronic conduction. The Co3O4@GCN tubular nanostructured (TNS) hybrid exhibited the lowest overpotential (0.12 V) and excellent current density (147 mA/cm^2) in OER, better than benchmarks IrO2 and RuO2, and with superior durability in alkaline media. Furthermore, the Co3O4@GCN TNS hybrid demonstrated excellent performance in HER, with a much lower onset and overpotential, and a stable current density. It is expected that the Co3O4@GCN TNS hybrid developed in this study will be an attractive alternative to noble metals catalysts in large scale water splitting and fuel cells. 为氧和氢进化反应(OER/HER ) 的催化剂在精力采购例如切开的水的可更新的绿色的心。尽管不可思议的努力被作了为 OER 和她开发有效催化剂,大挑战在 bifunctional 催化剂的发展尚待。这里,我们报导公司 <sub>3</sub 的一个新奇混血儿 > 在 graphitic 碳氮化物(GCN ) 的管状的 nanostructures 嵌入并且在低温度通过一个灵巧的、大规模化学方法综合了的 O <sub>4</sub> 。在公司 <sub>3</sub 之间的强壮的 synergistic 效果 > O <sub>4</sub> 和 GCN 为 OER 和她作为 bifunctional 催化剂导致了优秀性能。混血儿的高表面区域,唯一的管状的 nanostructure,和作文为催化作用使所有氧化还原作用地点容易可得到并且提供了更快的离子、电子的传导。公司 <sub>3</sub > O <sub>4</sub>@GCN 管状的 nanostructured (TNS ) 混血儿展出了最低过电位(0.12 V ) 和优秀当前的密度(在 OER 的 147 妈 / 厘米 <sup>2</sup>) ,比基准 IrO <sub>2</sub> 和 RuO <sub>2</sub>, 并且与在碱的媒介的优异耐久性好。而且,公司 <sub>3</sub > O <sub>4</sub>@GCN TNS 混血儿在她表明了优秀性能与低得多的发作和过电位,并且稳定的当前的密度。这被期望公司 <sub>3</sub > 在这研究开发的 O <sub>4</sub>@GCN TNS 混血儿将是在大规模水切开和燃料房间的高贵金属催化剂的一种吸引人的选择。
出处 《Nano Research》 SCIE EI CAS CSCD 2015年第11期3725-3736,共12页 纳米研究(英文版)
基金 Acknowledgements Work at Beijing Institute of Technology was supported by the National Natural Science Foundation of China (Nos. 23171023 and 50972017) and Doctoral Program of the Ministry of Education of China (No. 20101101110026) Work at Peking University was supported by the NSFC-RGC Joint Research Scheme (No. 51361165201), the National Natural Science Foundation of China (Nos. 51125001 and 51172005), Beijing Natural Science Foundation (No. 2122022) and Doctoral Program of the Ministry of Education of China (No. 20120001110078). Deanship of Scientific Research at King Saud University through Prolific Research Group Project (No. PRG-1436-25).
关键词 carbon nitride cobalt oxide bifunctional catalyst oxygen evolution reaction hydrogen evolution reaction 双功能催化剂 Co3O4 碳纳米结构 析氢反应 管状 氧化 混合动力车 杂种
  • 相关文献

参考文献7

二级参考文献135

  • 1Endo, M.; Kim, C.; Nishimura, K.; Fujino, T.; Miyashita, K. Recent development of carbon materials for Li ion batteries. Carbon 2000, 38, 183-197.
  • 2Winter, M.; Besenhard, J. O.; Spahr, M. E.; Novak, P. Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 1998, 10, 725-763.
  • 3Boukamp, B. A.; Lesh, G. C.; Huggins, R. A. All-solid lithium electrodes with mixed-conductor matrix. J. Electrochem. Soc. 1981, 128, 725-729.
  • 4Winter, M.; Besenhard, J. O. Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim. Acta 1999, 45, 31-50.
  • 5Chang, W.-S.; Park, C.-M.; Kim, J.-H.; Kim, Y.-U.; Jeong, G.; Sohn, H.-J. Quartz (SiO2): A new energy storage anode material for Li-ion batteries. Energy Environ. Sci. 2012, 5, 6895-6899.
  • 6Courtney, I. A.; Dahn, J. R. Electrochemical and in situ X-ray diffraction studies of the reaction of lithium with tin oxide composites. J. Electrochem. Soc. 1997, 144, 2045- 2052.
  • 7Chen, J. S.; Lou, X. W. SnO2-based nanomaterials: Synthesis and application in lithium-ion batteries. Small 2013, 9, 1877-1893.
  • 8Kim, C.; Noh, M.; Choi, M.; Cho, J.; Park, B. Critical size of a nano SnO2 electrode for Li-secondary battery. Chem. Mater. 2005, 17, 3297-3301.
  • 9Ye, J.; Zhang, H.; Yang, R.; Li, X.; Qi, L. Morphology- controlled synthesis of SnO2 nanotubes by using 1D silica mesostructures as sacrificial templates and their applications in lithium-ion batteries. Small 2010, 6, 296-306.
  • 10Kim, W.-S.; Lee, B.-S.; Kim, D.-H.; Kim, H.-C.; Yu, W.-R.; Hong, S.-H. SnO2 nanotubes fabricated using electro- spinning and atomic layer deposition and their gas sensing performance. Nanotechnology 2010, 21, 245605.

共引文献178

同被引文献20

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部