期刊文献+

关于Toader平均和形心平均的最佳不等式

Optimal Inequalities Related to the Centroidal and Toader Means
原文传递
导出
摘要 对所有的a,b>0且a≠b,找到了最佳参数α,β∈(0,1)和λ,μ∈[1/2,1],使得双向不等式C^(α)(a,b)A^(1-α)(a,b)<T(a,b)<C~β(a,b)A^(1-β)(a,b)C(λa+(1-λ)b,λb+(1-λ)a)<T(a,b)<C(μa+(1-μ)b,μb+(1-μ)a)成立.其中A(a,b),C(a,b)和T(a,b)分别表示两个正数a和b的算术平均,形心平均和Toader平均. We find the best possible parameters a,/β,∈(0,1) and λ,μ∈[1/2,1]such that the double inequalities C^-α(a,b)A^1-α(a,b)〈-C^-β(a,b)A^1-β(a,b) C^-(λα+(1-λ)b,,λb+(1-λ)a)〈T(a,b)〈C^-(μa+(1-μ)b,μb+(1-μ)a) hold for all a,b 0 with a ≠ b.where A(a,b),C(a,b) and T(a,b) denote the arithmetic,centroidal,and Toader means of two positive numbers a and b,respectively.
作者 张帆 杨月英
出处 《数学的实践与认识》 北大核心 2015年第22期260-266,共7页 Mathematics in Practice and Theory
基金 浙江省自然科学基金(LY13A010004) 浙江省教育厅项目(Y201431915) 浙江广播电视大学科研课题(XKT15G17)
关键词 Toader平均 形心平均 算术平均 完全椭圆积分 Toader mean centroidal mean arithmetic mean complete elliptic integrals
  • 相关文献

参考文献16

  • 1Toader G.Some mean volues related to the arithmetic-geometric mean[J].J Math Anal Appl,1998,218(2):358-368.
  • 2Neuman E.Bounds for symmetric elliptic integrals[J].J Approx Theory,2003,122(2):249-259.
  • 3Kazi H and Neuman E.Inequalities and bounds for elliptic integrals[J].J Approx Theory,2007,146(2):212-226.
  • 4Kazi H and Neuman E.Inequalities and bounds for elliptic integrals II:Special functions and orthogonal Polynomials[J].Contemp Math Amer Math Soc Providence RI,2008,471:127-138.
  • 5Chu Y M,Wang M K and Qiu S L.Optimal combinations bounds of root-square and arithmetic means for Toader mean[J].Proc Indian Acad Sci Math Sci,2012,122(1):41-51.
  • 6Chu Y M,and Wang M K.Optimal Lehmer mean bounds for the Toader mean[J].Results Math,2012,61(3-4):223-229.
  • 7Hua Y,and Qi F.The best bounds for Toader mean in terms of the centroidal and arithmetic means,Available online at http://arxiv.org/abs/1303.2451.
  • 8song Y Q,Jiang W D,Chu Y M and Yan D D.Optimal bounds for Toader mean in terms of arithmetic and contrahrmonic means[J].J Math Inequal,2013,7(4):751-777.
  • 9Chu Y M,Wang M K and Mo X Y.Sharp bounds for Toader mean in terms of contrahrmonic mean with applications[J].J Math Inequal,2013,7(2):161-166.
  • 10Qiu S L,and Shen J M.On two problems concerning means[J].J Hangzhou Inst Electronic Engg,1997,17(3):1-7.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部