期刊文献+

三角型和圆型钢丝绳股弯曲性能有限元比较研究 被引量:6

Comparative study of bending performances of spiral triangular strand and simple straight strand based on finite element method
原文传递
导出
摘要 基于绳股结构特点、钢丝材料弹塑性及钢丝间的摩擦接触等因素,对三角型及圆型钢丝绳股弯曲力学性能进行分析,建立了上述两种类型钢丝绳股的有限元计算模型,并对具有相同捻角及总钢丝截面积的两类绳股的弯曲力学性能进行了对比分析.结果表明:纯弯曲载荷作用下,三角型和圆型钢丝绳股均表现出弹塑性力学特征,且弯矩对曲率的响应存在滞后现象;二者抗弯刚度分别以0.2%/(°)和0.8%/(°)的速率随捻角的增大而减小,且分别以22.3%/mm和15.5%/mm的速率随侧丝直径的增大而增大;二者von Mises应力分别以0.9%/mm和0.6%/mm的速率随侧丝直径的增大而增大,二者塑性变形分别以5.8%/mm和2.3%/mm的速率随侧丝直径的增大而增大;三角股的抗弯刚度、von Mises应力、总变形和塑性变形分别约为圆股的88.0%,89.3%,67.9%和74.6%. The bending performances of spiral triangular strands and simple straight strands were analyzed in this paper,in which factors like strands configuration,elasto-plasticity of steel wire,inter-wire friction and contact were considered.As a consequence,3Dfinite element(FE)models of the strands were established,and the bending performances of the two kinds of strands with same lay angle and total wire sectional area were analyzed and compared.The results show that the elasto-plastic behavior can be found in both kinds of strands under pure bending load,and the hysteresis in the response of the bending moment to the curvature is observed as well.The bending stiffness of the two strands decrease respectively with ratios of0.2%/(°)and 0.8%/(°)as lay angle increases,and increase respectively with ratios of22.3%/mm and 15.5%/mm as outer wire diameter increases.With increasing outer wire diameter,the von Mises stress of the two strands rise respectively with ratios of 0.9%/(°)and0.6%/(°),meanwhile,their plastic deformation also increase respectively with ratios of5.8%/mm and 2.3%/mm.The bending stiffness,von Mises stress,total deformation and plastic deformation of the spiral triangular strand are about 88.0%,89.3%,67.9% and74.6% of those of the simple straight strand.
出处 《中国矿业大学学报》 EI CAS CSCD 北大核心 2015年第6期1105-1112,共8页 Journal of China University of Mining & Technology
基金 国家重点基础研究发展计划(973)项目(2014CB049403)
关键词 三角型钢丝绳股 圆型钢丝绳股 弯曲载荷 有限元法 弹塑性 spiral triangular strand simple straight strand bending load finite element method elasto-plasticity
  • 相关文献

参考文献25

  • 1JIANGW G. A concise finite element model for pure bending analysis of simple wire strand [J].Interna- tional Journal of Mechanical Sciences, 2012,54 ( 1 ) : 69-73.
  • 2PHILLIPS J W, COSTELLO G A. Analysis of wire ropes with internal-wire-rope cores [J]. Journal of Applied Mechanics - Transactions of the ASME, 1985,52(3) :510-516.
  • 3SATHIKH S,MOORTHY M B K,KRISHNAN M. A symme- tric linear elastic model for helical wire strands under axisym-metric loads [J]. Journal o{ Strain Analysis for Engineering Design, 1996,31 (5) : 389-399.
  • 4COSTELLO G A. Theory of wire rope [M]. New York : Springer, 1997.
  • 5JIANG W G, HENSHALL J L, WALTON J M. A concise finite element model for three-layered straightwire rope strand[J]. International Journal of Mechan- ical Sciences, 2000,42 (1) : 63-86.
  • 6IMRAK C E,ERDONMEZ C. On the problem of wire rope model generation with axial loading[J]. Mathe- matical ~ Computational Applications, 2010,15 (2) : 259-268.
  • 7ERDONMEZ C,IMRAK C E. A finite element model for independent wire rope core with double helical ge- ometry subjected to axial loads[J]. Sadhana-Academy Proceedings in Engineering Sciences, 2011, 36 (6) : 995-1008.
  • 8ERDONMEZ C, IMRAK C E. Modeling techniques of nested helical structure based geometry for numerical analysis[J]. Strojniski Vestnik-Journal of Mechanical Engineering, 2011,57(4) : 283-292.
  • 9STANOVA E, FEDORKO G, FABIAN M, et al. Computer modelling of wire strands and ropes Part I~ Theory and computer implementation[J]. Advances in Engineering Software,2011,42(6) :305-315.
  • 10STANOVA E, FEDORKO G, FABIAN M, et al. Computer modelling of wire strands and ropes part Ih Finite element-based applications[J]. Advances in Engineering Software, 2011,42 (6) : 322-331.

二级参考文献20

共引文献54

同被引文献38

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部