期刊文献+

多任务学习框架下的单帧图像超分辨率重建(英文)

Single image super-resolution using multi-task learning framework
下载PDF
导出
摘要 为了充分利用图像的自相似性质,针对图像的超分辨率重建问题构造了一个多任务学习的问题,并基于高斯过程回归进一步扩展,提出了一个新颖的单帧图像超分辨率重建算法.该算法能够在图像的超分辨率重建结果中有效地抑制图像显著边缘处出现的噪声和伪影,并能生成视觉效果更为自然的高分辨率图像.实验表明该算法产生的高分辨率图像结果能够相当于甚至超越当前先进的算法. For making full use of the property of self similarity,a novel SISR method based on a variant of Gaussian process regression( GPR) was proposed by considering it as a multi-task learning problem.This method could efficiently suppress the artifacts along the salient edges and produce natural looking appearance in the final high resolution( HR) results. Extensive experimental results demonstrated that the results produced by our method could be equivalent or superior to other state of the art algorithms.
作者 吴亚榕
出处 《仲恺农业工程学院学报》 CAS 2015年第4期50-53,共4页 Journal of Zhongkai University of Agriculture and Engineering
基金 Guangdong province special fund research project for scientific and professional construction of university(2013WYXM0058) Guangdong province science and technology planning project(2013B020314019)
关键词 单帧图像超分辨率 多任务学习 高斯过程回归 自相似 single image super-resolution multi-task learning gaussian process regression self-similarity
  • 相关文献

参考文献13

  • 1HOU H S,ANDREWS H.Cubic splines for image interpolation and digital filtering[J].IEEE Transactions on Acoustic'Speech and Signal Processing,1978,26(6):508-517.
  • 2LI X,ORCHARD M T.New edge-directed interpolation[J].IEEE Transactions on Image Processing,2001,10(10):1521-1527.
  • 3ZHANG L,WU X.An edge-guided image interpolation algorithm via directional filtering and data fusion[J].IEEE Transactions on Image Processing,2006,15(8):2226-2238.
  • 4LI M,NGUYEN T Q.Markov random field model based edge-directed image interpolation[J].IEEE Transactions on Image Processing,2008,17(7):1121-1128.
  • 5FATTAL R.Image upsampling via imposed edge statistics[J].ACM Transactions on Graphics(TOG),2007,26(3):95.
  • 6SHAN Q,LI Z,JIA J,et al.Fast image/video upsampling[J].ACM Transactions on Graphics(TOG),2008,27(5):153.
  • 7SUN J,XU Z B,SHUM H Y.Image super-resolution using gradient profile prior[C]∥IEEE Conference on Computer Vision and Pattern Recognition,Anchorage:IEEE,2010:1-8.
  • 8FREEMAN W T,LIU C.Markov random fields for super-resolution and texture synthesis[J].Advances in Markov Random Fields for Vision and Image Processing,2011(1):155-165.
  • 9CHANG H,YEUNG D Y,XIONG Y.Super-resolution through neighbor embedding[C]∥IEEE Conference on Computer Vision and Pattern Recognition,Washington,DC:IEEE,2004:275-282.
  • 10YANG J C,WRIGHT J,HUANG T,et al.Image super-resolution as sparse representation of raw image patches[C]∥IEEE Conference on Computer Vision and Pattern Recognition,Anchorage:IEEE,2008:1-8.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部