期刊文献+

基于软加权映射的局部聚类向量表示方法 被引量:2

Vector of locally aggregated descriptor based on soft assignment approach
下载PDF
导出
摘要 基于特征码本的图像分类方法依赖于需要特征向量与聚类中心之间的映射,然而硬加权映射方法导致了相似的特征向量被映射为不同的聚类中心,从而降低了分类的查全率。为此提出一种基于软加权映射的局部聚类向量表示方法。该方法首先用k均值算法将特征向量聚类为k个聚类中心,采用最近邻算法寻找最接近的s个聚类中心,通过特征向量与聚类中心之间的相似度和邻近程度构建软加权映射的局部聚类向量,然后统计特征直方图,最后用主成分分析减少特征直方图维度。实验结果分析表明,相比较硬加权映射方法,文中方法提高了约5%的分类准确率。 The traditional bag-of-words image classification approaches are based on feature vectors mapping to clustering centers by hard assignment, which will cause vision similarly features vectors being mapped to different clustering centers. In this case, we pro- pose a novel vector of locally aggregated descriptor based on soft assignment approach. Firstly, we associate local features with s near- by cluster centers instead of its single nearest neighbor cluster depending on the distance between the features and the cell centers by u- sing k-means clustering algorithm. Then, we construct vector of locally aggregated descriptors by computing distances and similarity between feature vectors and clustering centers. Finally, we use PCA algorithm to reduce the dimension of feature histogram. The ex perimental results show that the proposed method can improve 5 % accuracy rate.
出处 《微型机与应用》 2016年第1期38-41,共4页 Microcomputer & Its Applications
基金 广东省自然科学基金博士启动项目(2015A030310340) 广东省高等学校科技创新项目(2013KJCX0117)
关键词 软加权映射 图像分类 特征码本 主成分分析 soft assignment image classifieation feature dictionary PCA
  • 相关文献

参考文献14

  • 1GRAUMAN K,DARRELL T.Pyramid match kernels:Discriminative classification with sets of image features[C].Proceedings of the IEEE International Conference on Computer Vision,2005:1458-1465.
  • 2王祎灏,宋璟毓.基于SURF特征的人脸识别方法研究[J].微型机与应用,2014,33(7):31-34. 被引量:3
  • 3李倩影,陈锻生,吴扬扬.基于图像距离匹配的人脸卡通化技术[J].微型机与应用,2014,33(10):44-46. 被引量:2
  • 4LAZEBNIK S.Semi-local and global models for texture,object and scene recognition[D].University of Illinois at Urbana Champaign,2006.
  • 5KIM G,FALOUTSOS C,HEBERT M.Unsupervised modeling and recognition of object categories with combination of visual contents and geometric similarity links[C].In ACM International Conference on Multimedia Information Retrieval(ACM MIR),2008:419-426.
  • 6LEORDEANU M,HEBERT M.A spectral technique for correspondence problems using pairwise constraints[C].In ICCV,2005:1482-1489.
  • 7LEORDEANU M,HEBERT M,SUKTHANKAR R.Beyond local appearance:Category recognition from pairwise interactions of simple features[C].In CVPR,2007:1-8.
  • 8刘扬闻,霍宏,方涛.词包模型中视觉单词歧义性分析[J].计算机工程,2011,37(19):204-206. 被引量:11
  • 9Tian Qi,Hua Gang,Huang Qingming,et al.Generating descriptive visual words and visual phrases for large-scale image applications[J].IEEE Transactions on Image Processing,2011,20(9):2664-2667.
  • 10JEGOU H,DOUZE M,SCHMID C,et al.Aggregating local descriptors into a compact image representation[C].IEEE Conference on Computer Vision Pattern Recognition,2010:3304-3311.

二级参考文献18

  • 1刘振安,刘瑄.基于SVG的卡通人脸图形自动生成法[J].测控技术,2006,25(5):24-26. 被引量:4
  • 2Pedro Q, Florent M, Jean-Marc O. A Thousand Words in a Scene[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2007, 29(9): 1575-1589.
  • 3Bosch A, Zisserman A. Scene Classification Using a Hybrid Generative/Discriminative Approach[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2008, 30(4): 712-727.
  • 4Hofmann T. Unsupervised Learning by Probabilistic Latent Semantic Analysis[J]. Journal of Machine Learning, 2001, 41(2): 177-196.
  • 5Yang Jun, Jiang Yugang. Evaluating Bag of Visual Words Representations in Scene Classification[C]//Proceedings of International Workshop on Multimedia Information Retrieval. [S. l.]: ACM Press, 2007: 197-206.
  • 6BAY H, ESS A, TUYTELAARS T, et al. SURF: speeded up robust features [J]. Computer Vision and Image Understanding, 2008, 110(3) :346-359.
  • 7SHAKHNAROVICH G, MOGHADDAM B. Face recognition in subspaces[J].Handbook of Face Recognition, 2004:141-168.
  • 8Lei Yunqi, Jiang Xutuan, Shi Zhenxiang, et al. Face recognition method based on SURF feature [J]. International Symposium on Computer Network and Multimedia Technology, 2009 : 1-4.
  • 9An Shan, Ma Xin, Song Rui, et al. Face detection and recognition with SURF for human-robot interaction I J]. International Conference on Automation and Logistics, 2009: 1946-1951.
  • 10Zhao Tuo, Liang Zhizheng, ZHANG D, et al. Interest filter vs interest operator: face recognition using Fisher linear diseriminant based on interest filter representation [J]. Pattern Recognition Letlers, 2008, (29) : 1849-1857.

共引文献13

同被引文献10

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部