期刊文献+

利用无人机影像进行滑坡地形三维重建 被引量:19

3D Reconstruction of Landslide Terrain from UAV Images
下载PDF
导出
摘要 针对滑坡表达研究的需要,提出了一种基于无人机影像序列的滑坡地形全自动鲁棒三维重建方法。以某滑坡区为试验场地,利用无人机搭载小型数码相机获取滑坡影像,辅助飞控数据建立的影像拓扑关系,依据计算机视觉原理,对滑坡地形进行了全自动三维建模,生成了包含颜色信息的三维点云数据,构建了滑坡体数字表面模型(DSM)。结果表明:该方法可快速实现滑坡三维地形精细测绘,有效降低作业成本和劳动强度;所建模型可准确表达滑坡体的空间分布特征,为正确分析评价滑坡稳定性提供了有力支持,尤其适合在困难山区或潜在危险地区的滑坡遥感动态监测。 To meet the demand of expression research for landslide,a fully automated and robust reconstruction approach form UAV images which can generate 3- D landslide terrain was put forward. This method was applied to a landslide affected area in Shandong successfully. Depending on the established image topology relationship with the flight- control data acquired by the UAVs,the proposed computer vision method can easily enables digital surface model of landslide to be built based on generated 3D color point clouds from images obtained by UAV with a small digital camera. The experiment showed that the presented method can be used for landslide terrain fine mapping,effectively reduce the operation cost and labor intensity. Moreover,the spatial distribution characteristics of landslide body can be accurately expressed through reconstructed model,which can provide powerful support for the correct analysis and evaluation of landslide stability,especially suitable for remote sensing of landslide dynamic monitoring in the difficult alpine terrain or potential dangerous areas.
出处 《测绘与空间地理信息》 2015年第12期68-71,共4页 Geomatics & Spatial Information Technology
基金 中央高校基本科研业务费专项资金(ZY20140205)资助
关键词 滑坡 无人机 影像拓扑关系 三维重建 landslide unmanned aerial vehicles image topology relationship 3D reconstruction
  • 相关文献

参考文献13

  • 1易锋,胡家赋,郭军.RBF神经网络—半参数优化模型在滑坡预报中的应用[J].测绘与空间地理信息,2014,37(12):43-45. 被引量:3
  • 2李明超,胡兴娥,安娜,刘杰.滑坡体三维地质建模与可视化分析[J].岩土力学,2008,29(5):1355-1360. 被引量:28
  • 3Irschara A, Kaufmann V, Klopschitz M, et al. Towards fully automatic photogrammetric reconstruction using digit- al images taken from UAVs [ C ]. Symposium of Commis- sion VII of the ISPRS- 100 Years, 2010, 65 -70.
  • 4Lowe D G. Distinctive image features from scale -invari- ant interest points [ J ]. International Journal of Computer Vision ,2004,60 ( 2 ) :91 - 110.
  • 5Snavely N. Scene reconstruction and visualization from in- ternet photo collections [ D ]. Washington : University of Washington, 2008.
  • 6Snavely N, Seitz S. M. , Szeliski, R. Modeling the world from Internet photo collections [ J ]. International Journal of Computer Vision,2008,80 ( 2 ) : 189 - 210.
  • 7Furukawa Y, Ponce J. Accurate, dense, and robust multi -view stereopsis [ J]. IEEE Transactions on Pattern A- nalysis and Machine Intelligence, 2010,32 ( 8 ) : 1 362 - 1 376.
  • 8Barazzetti L, Remondino F, Scaioni M. Extraction of ac- curate tie points for automated pose estimation of close - range blocks [ J ]. ISPRS Journal of Photogrammetry and Remote Sensing,2010 : 151 - 156.
  • 9Nouwakpo S K, James, M R, Wehz, M A, et al. Evalu- ation of structure from motion for soil microtopography measurement[ J ]. The Photogrammetric Record, 2014,29 (147) :297 -316.
  • 10Lucieer A, Turner D, King, D H, et al. Using an Un- manned Aerial Vehicle (UAV) to capture micro - topog- raphy of Antarctic moss beds[ J ]. International Journal of Applied Earth Observation,2014,27 ( Part A) :53 - 62.

二级参考文献32

共引文献49

同被引文献199

引证文献19

二级引证文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部