期刊文献+

混合小推力航天器日心悬浮轨道保持控制 被引量:7

Station-keeping control of spacecraft using hybrid low-thrust propulsion in heliocentric displaced orbits
原文传递
导出
摘要 针对太阳帆、太阳电混合推进航天器日心悬浮轨道保持控制问题进行了研究。为解决基于局部线性化模型设计轨道保持控制器时存在的控制精度不高、模型精确性过度依赖等问题,应用自抗扰控制(ADRC)技术设计了轨道保持控制器。首先,采用圆形限制性三体问题(CRTBP)模型推导了混合小推力航天器日心悬浮轨道动力学方程;然后,考虑系统模型不确定性和外部扰动,提出了一种基于扰动估计和补偿的轨道保持控制方法;最后,数值仿真表明存在系统模型不确定性、初始入轨误差及地球轨道偏心率扰动等因素的情况下,所设计的控制器仅需很小的速度增量即可实现高精度的日心悬浮轨道保持控制。 In this paper,station-keeping of heliocentric displaced orbits using a hybrid of solar sail and solar electric propulsion is investigated.In order to avoid the problem of low control precision and excessive dependence on model accuracy,which occurs when controllers are designed according to locally linearized models,a station-keeping control method based on active disturbance rejection control(ADRC)technique is proposed.Firstly,the dynamic model of a spacecraft using hybrid low-thrust propulsion in the heliocentric displaced orbit is derived based on the circular restricted three-body problem(CRTBP).Secondly,considering unmodelled dynamic and external disturbance,a station-keeping control method based on disturbance estimation and compensation is then presented.Finally,numerical simulations show that in the presence of system uncertainties,initial injection errors,and perturbations of the eccentric nature of the Earth's orbit,high station-keeping control precision can be achieved with relative small velocity increment.
出处 《航空学报》 EI CAS CSCD 北大核心 2015年第12期3910-3918,共9页 Acta Aeronautica et Astronautica Sinica
关键词 混合小推力 太阳帆 日心悬浮轨道 轨道保持 自抗扰控制 hybrid low-thrust propulsion solar sails heliocentric displaced orbit station-keeping active disturbance rejection control
  • 相关文献

参考文献20

  • 1McInnes C R, McDonald A, Simmons J, et al. Solar sail parking in restricted three-body system[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(27):399 -406.
  • 2Baoyin H X, McInnes C R. Solar sail equilibria in the elliptical restricted three-body problem[J]. Journal of Guid- ance, Control, and Dynamics, 2006, 29(3) : 538-543.
  • 3Baoyin H X, McInnes C R. Solar sail halo orbits at the sun-earth artificial L1 point[J]. Celestial Mechanics and Dynamical Astronomy, 2008, 94(27:155- 171.
  • 4Gong S P, Li J F, Baoyin H X. Analysis of displaced solar sail orbits with passive control[J], Journal of Guidance, Control, and Dynamics, 2008, 31(3): 782-785.
  • 5Heiligers J, McInnes C R, Biggs J D, et al. Displaced ge ostationary orbits using hybrid low-thrust propulsion[J]. Acta Astronautica, 2012, 71: 51-67.
  • 6Simo J, Mclnnes C R. Designing displaced lunar orbits using low thrust propulsion[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(1): 259-265.
  • 7McKay R, Macdonald M, Biggs J, et al. Survey of highly non-Keplerian orbits with low thrust propulsion[J]. Jour- nal of Guidance, Control, and Dynamics, 2011, 34(3):645-666.
  • 8Mclnnes C R. Passive control of displaced solar sail orbits [J]. Journal of Guidance, Control, and Dynamics, 1998, 21(6) : 975- 982.
  • 9Bookless J, MeInnes C. Dynamics and control of displaced periodic orbits using solar-sail propulsion[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(3): 527- 537.
  • 10Simo J, McInnes C R. Feedback stabilization of displaced periodic orbits: Application to binary asteroids[J]. Acta Astronautica, 2014, 96: 106-115.

二级参考文献21

共引文献1048

同被引文献38

引证文献7

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部