摘要
A comprehensive computational fluid dynamics(CFD) model is developed based on the gas-liquid two-phase hydrodynamics,gas-liquid mass-transfer theory and chemical reaction kinetics,and the ammonia-based CO2 absorption in a spray column is numerically studied.The Euler-Lagrange model is applied to describe the behavior of gas-liquid twophase flowand heat transfer.The dual-film theory and related correlations are adopted to model the gas-liquid mass transfer and chemical absorption process.The volatilization model of multi-component droplet is utilized to account for ammonia slippage.The effect of operation parameters on CO2 removal efficiency is numerically studied.The results showa good agreement with the previous experimental data,proving the validity of the proposed model.The profile studies of gasphase velocity and CO2 concentration suggest that the flowfield has a significant impact on the CO2 concentration field.Also,the local CO2 absorption rate is influenced by both local turbulence and the local liquid-gas ratio.Furthermore,the velocity field of gas phase is optimized by the method of adjusting the orifice plate,and the results showthat the CO2 removal efficiency is improved by approximately 4%.
基于气液两相流体力学、气液传质理论和化学反应动力学,建立了综合的CFD模型,并对喷淋塔内氨水脱碳进行了数值研究.采用欧拉-拉格朗日模型描述了气液两相流动特性和传热情况.根据双膜理论及相关的关联式,对气液传质和化学吸收过程进行了建模.采用多组分液滴的挥发模型模拟氨水的挥发过程.通过数值模拟研究了运行参数对CO_2脱除效率的影响,并与现有的文献结果进行对比,验证了模型的正确性.气相速度和CO_2浓度的分析表明,流场对CO_2的浓度场有着重要的影响.CO2的局部吸收速率受局部湍流和局部液气比的共同影响.此外,采用加装孔板的方法对气相流场进行了优化,结果表明CO_2脱除效率提高了约4%.
基金
The National Natural Science Foundation of China(No.51276038)