期刊文献+

图像边缘检测的分数阶微分算子研究 被引量:17

ON FRACTIONAL DIFFERENTIAL OPERATORS FOR IMAGE EDGE DETECTION
下载PDF
导出
摘要 针对常用整数阶微分边缘检测算子不能较好保持图像纹理细节的不足,在4-方向的Roberts算子、Prewitt算子和Sobel算子的基础上利用0~1阶分数阶微分替换一阶微分,构造了3种用于图像边缘检测的0~1阶分数阶微分新算子。实验结果表明,所构造的3种分数阶微分算子不仅能有效地提取出图像的边缘信息,而且还能较大程度地保留图像的纹理细节。检测效果优于常用整数阶微分算子及现有的一些0~1阶分数阶微分算子。 Common integer differential operators for edge detection cannot keep the texture information of image well. Aiming this problem,on the basis of four-direction Roberts operator,Prewitt operator and Sobel operator,we use 0 ~ 1-order fractional differential to replace one-order differential and construct three novel 0 ~ 1-order fractional differential operators for image edge detection. Experimental results demonstrate that the three constructed fractional differential operators can effectively extract the edge characteristics,and can keep texture information of the image to greater extent as well. Its detection effects outperform that of the common integer differential operators and some existing 0 ~ 1-order fractional differential operators.
作者 李军成
出处 《计算机应用与软件》 CSCD 2015年第12期206-209,221,共5页 Computer Applications and Software
基金 湖南省自然科学基金项目(13JJ6081) 湖南人文科技学院重点建设学科项目
关键词 边缘检测 分数阶微分 ROBERTS算子 PREWITT算子 SOBEL算子 Edge detection Fractional differential Roberts operator Prewitt operator Sobel operator
  • 相关文献

参考文献13

  • 1Liu J,Chen S C,Tan X Y.Fractional order singular value decomposition representation for face recognition[J].Pattern Recognition,2007,41(1):168-182.
  • 2杨柱中,周激流,晏祥玉,黄梅.基于分数阶微分的图像增强[J].计算机辅助设计与图形学学报,2008,20(3):343-348. 被引量:98
  • 3Pu Y F,Zhou J L,Yuan X.Fractional differential mask:a fractional differential-based approach for multiscale texture enhancement[J].IEEE Trans on Image Processing,2010,19(2):491-511.
  • 4Zhang J,Wei Z H.A class of fractional-order multi-scale variational models and alternating projection algorithm for image denoising[J].Applied Mathematical Modeling,2011,35(5):2516-2528.
  • 5Mathieu B,Melchior P,Outsaloup A,et al.Fractional differentiation for edge detection[J].Signal Processing,2003,83(11):2421-2432.
  • 6杨柱中,周激流,黄梅,晏祥玉.基于分数阶微分的边缘检测[J].四川大学学报(工程科学版),2008,40(1):152-157. 被引量:51
  • 7王卫星,于鑫,赖均.一种改进的分数阶微分掩模算子[J].模式识别与人工智能,2010,23(2):171-177. 被引量:12
  • 8Pu Y F,Zhou J L.A novel approach for multi-scale texture segmentation based on fractional differential[J].International Journal of Computer Mathematics,2011,88(1):58-78.
  • 9Gao C B,Zhou J L,Hu J R,et al.Edge detection of color image based on quaternion fractional differential[J].IET Image Processing,2011,5(3):261-272.
  • 10汪成亮,乔鹤松,陈娟娟.基于纹理复杂度的自适应分数阶微分算法[J].计算机工程,2012,38(7):177-178. 被引量:7

二级参考文献69

  • 1袁晓,张红雨,虞厥邦.分数导数与数字微分器设计[J].电子学报,2004,32(10):1658-1665. 被引量:47
  • 2王卫星.基于紫外光和可见光的岩体节理裂隙图像获取[J].金属矿山,2006,35(3):18-21. 被引量:11
  • 3威廉姆,邓鲁华.数字图像处理[M].北京:机械工业出版社,2005.
  • 4Deng G.Differentiation-based edge detection using the logarith- mic image processing model[J].Mathematical Imaging and Vi- sion, 1998,8(2) : 161-180.
  • 5冈萨雷斯.数学图像处理[M].北京:电子工业出版社,2005.
  • 6李远禄,于盛林.分数阶微分器的实现及其阶次对方法选择的影响[J].南京航空航天大学学报,2007,39(4):505-509. 被引量:3
  • 7Gonzalez R C, Woods R E. Digital Image Processing. New Jersey: Prentice-Hall, 2008. 703-728.
  • 8Shih F Y. Image Processing and Pattern Recognition: Fun- damentals and Techniques. New Jersey: John Wiley & Sons, 2010. 53-58.
  • 9John C. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6): 679-698.
  • 10Zhang Y, Rockctt P 1. The Bayesian operating point of the Canny edge detector. IEEE Teansactions on Image Process- ing, 2006, 15(11): 3409-3416.

共引文献171

同被引文献166

引证文献17

二级引证文献145

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部