期刊文献+

一种基于定位更新技术的人工蜂群聚类算法 被引量:2

An Artificial Bee Colony Clustering Algorithm Based on the Location Update Technology
下载PDF
导出
摘要 本文提出一种基于定位更新技术的人工蜂群算法,并将其应用于聚类分析问题.定位更新技术是在每一次待工蜂搜索结束后,充分利用当前最优解和最差解的信息,对最优解做进一步的更新.实验表明,基于定位更新技术的人工蜂群聚类算法,提高了算法利用先前的解来寻找更好解的开采能力.该算法与K-means算法、基于粒子群优化的聚类算法以及基于人工蜂群的聚类算法相比,具有更好的聚类性能. In this paper, an artificial bee colony (ABC)algorithm based on location update technology is proposed and applied to the problems of clustering analysis. The technology makes the algorithm fully use the information of current optimal solution and the worst solution to do further location update of current optimal solution after the search of onlookers. Experiments show that the ABC algorithm based on location update technology enhances the exploitation ability of applying the previous solutions to look for better solutions. The proposed algorithm also has better clustering performance compared with K-means algorithm, clustering algorithms based on particle swarm optimization and artificial bee colony.
出处 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2015年第4期95-102,共8页 Journal of Nanjing Normal University(Natural Science Edition)
基金 教育部人文社会科学研究青年基金(12YJCZH179) 国家自然科学基金项目(11371197)
关键词 定位更新技术 人工蜂群算法 聚类分析 开采能力 location update technology, artificial bee colony algorithm, clustering analysis, exploitation ability
  • 相关文献

参考文献13

  • 1KRISHMA K, MURTY M N. Genetic K-means algorithm [J ]. IEEE transactions on systems, man, and cybernetics. 1999,29 (3) : 433-439.
  • 2MAULIK U, BANDYOPADHAY S. Genetic algorithm-based clustering technique [J]. Pattern recognition, 2000, 33 (9) : 1455-1465.
  • 3DENEUBOURG J L,GOSS S, FRANKS N. The dynamics of collective sorting:robot-like ants and ant-like robots[ C ]//Proceed- ings of the First International Conference on Simulation of Adaptive haviour, From Animals to Animals J, MIT Press, Cam- bridge MA, 1991:356-365.
  • 4LUMER E, FAIETA B. Diversity and adaptation in populations of clustering ants [C]//Proceedings of the Third International Conference on Simulation of Adaptive Behavior:From Animals to Animats, Vol. 3, MIT Press/Bradford Books, Cambridge, MA, 1994:501-508.
  • 5OMRAN M, Salman A, Engelbrecht A P. Image Classification Using Particle Swarm Optimization [ C ]//Proceedings of the 4th Asia-Pacific conference on simulated evolution and learning, Singapore, 2002.
  • 6KARABOGA D. An idea based on honey bee swarm for numerical optimization [ M ]. Erciyes University, Engineering Faculty Computer Engineering Department, 2005.
  • 7Z HANG C, OUYANG D, NING J. An artificial bee colony approach for clustering [J ]. Expert Syst Appl, 2010,37 (7) :4761- 4767.
  • 8KARABOGA D, OZTURK C. Fuzzy clustering with artificial bee colony algorithm [J]. Sci Res Essay, 2010,5 (14) : 1899- 1902.
  • 9KARABOGA D, OZTURK C. A novel clustering approach:Artificial Bee Colony algorithm [J ]. Applied soft computing, 2011, 11 ( 1 ) : 652-657.
  • 10TAN Q H, WU H J, HU B, et al. An Improved Artificial Bee Colony Algorithm for Clustering [C]//Proceedings of the 2014 conference companion on genetic and evolutionary computation companion, 2014: 19-20.

同被引文献8

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部