期刊文献+

基于物联网的物流智能控制系统应用与研究 被引量:1

Research and Application on the Logistics Intelligent Control System Based on the Internet of Things
下载PDF
导出
摘要 为了解决当前工厂物流系统离散度高、缺乏集成控制等问题,本文结合图像匹配,TCP耦合Socket通信,服务器Ajax等关键技术,设计了基于物联网的物流智能控制系统.首先,基于相机感光芯片与归一化积相关灰度,实现对物流监控端的图像匹配;然后将判断结果通过TCP协议与Socket通信,传送给服务器监听端程序;最后基于Ajax与SQL Server开发出服务器端的快速响应与决策功能,完成对物流机构端的智能控制.实验数据显示:与当前物流控制系统相比,面对相同物流量与离散程度时,本文物流智能控制系统的人力消耗更少、控制精细性更高、实时效率更高. In order to solve the current problems such as factory logistics discrete degree is too high, the lack of precise control and so on,the logistics intelligent control system based on the Internet of Things was designed, which combined with image matching, coupling Socket TCP communications, server Ajax and other key tech- nologies. First of all, based on digital sensor chip and normalized product correlation grayscale, the image was matched on realization of logistics monitoring. Then the results of judgment were transmitted to the server to monitor program through TCP protocol and Socket communication. And finally, based on Ajax and used to de- velop server-side fast response and decision function, the logistics agency was intelligent control. Experimental data shows that compared with the traditional logistics control system, human consumption of this logistics intel- ligent control system is less, the control is more precise, and the real-time efficiency is higher when it facing the same logistics quantity, discrete degree.
出处 《鲁东大学学报(自然科学版)》 2016年第1期26-30,37,共6页 Journal of Ludong University:Natural Science Edition
基金 安徽高校自然科学研究重点项目(KJ2015A389 KJ2015A450) 安徽省对外科技合作计划项目(1403062028) 安徽省高校学科(专业)拔尖人才学术资助重点项目(gxbj ZD2016094)
关键词 物联网 物流智能控制 图像匹配 SOCKET通信 Internet of Things logistics intelligent control image matching Socket communication
  • 相关文献

参考文献6

二级参考文献32

  • 1刘宁钟.复杂背景中条码检测定位技术的研究[J].南京航空航天大学学报,2005,37(1):65-69. 被引量:20
  • 2许一声,顾霓鸿.高压开关柜触头温度在线检测仪[J].高压电器,2005,41(2):139-140. 被引量:19
  • 3孟庆民.高压开关设备的温度在线监测研究[J].高压电器,2006,42(5):352-354. 被引量:27
  • 4徐殿国,张相军,刘晓胜,王议锋.照明电子技术的发展现状与未来[J].电力电子技术,2007,41(10):2-9. 被引量:22
  • 5冈萨雷斯,伍兹.数字图像处理(第三版)[M].北京:电子工业出版社,2011.
  • 6SHERIN M Y, RANA M S. Automated Barcode Recognition for Smart Identification and Inspection Automation[J]. Expert Systems with Applications : An International Journal ( S0957-4174 ), 2007,33 (4) : 986-977.
  • 7ALEXANDER T, DOUGLAS C. Locating 1-D Bar Codes in DCT-Domain[C]// ICASSP' 2006: IEEE International Con- ference on Acoustics, Speech, and Signal Processing. Wash- ington, DC : IEEE Press, 2006 : 14-19.
  • 8DOUGLAS C, FLORIAN H. Locating and Decoding EAN-13 Barcodes from Images Captured by Digital Cameras[C]//ICICS ' 2005: Fifth International Conference on Information, Communications and Signal Processing. Bangkok, Thailand: IEEE, 2005 : 1595-1599.
  • 9刘志海,曾庆良,朱有锋.条码技术与程序设计[M].北京:清华大学出版社,2009.
  • 10陆卫忠,刘文亮.C++Builder6程序设计教程[M].北京:科学出版社,2009.

共引文献22

同被引文献3

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部