摘要
Arc erosion morphologies of Ag/MeO(10) electrical contact materials after 50000 operations under direct current of 19 V and 20 A and resistive load conditions were investigated using scanning electron microscope(SEM) and a 3D optical profiler(3DOP). The results indicated that 3DOP could supply clearer and more detailed arc erosion morphology information. Arc erosion resistance of Ag/SnO_2(10) electrical contact material was the best and that of Ag/CuO(10) was the worst. Arc erosion morphology of Ag/MeO(10) electrical contact materials mainly included three different types. Arc erosion morphologies of Ag/ZnO(10) and Ag/SnO_2(10) electrical contact materials were mainly liquid splash and evaporation, and those of Ag/CuO(10) and Ag/CdO(10) were mainly material transfer from anode to cathode. Arc erosion morphology of Ag/SnO_2(6)In_2O_3(4) electrical contact materials included both liquid splash, evaporation and material transfer. In addition, the formation process and mechanism on arc erosion morphology of Ag/MeO(10) electrical contact materials were discussed.
通过扫描电镜和三维光学轮廓仪观察Ag/MeO(10)触头在直流19 V、20 A和阻性载荷条件下操作50000次后的电弧侵蚀形貌。结果表明:三维光学轮廓仪可以提供更清晰和详细的表面侵蚀形貌信息。在相同的测试条件下,Ag/SnO_2(10)触头的抗电弧侵蚀性能最强,而Ag/CuO(10)触头的抗电弧侵蚀性能最差。Ag/MeO(10)触头的电弧侵蚀形貌主要有三种类型。Ag/Zn O(10)和Ag/SnO_2(10)的电弧侵蚀形貌主要是液体喷溅和汽化,Ag/CuO(10)和Ag/CdO(10)触头的电弧侵蚀形貌主要是材料从阳极到阴极的转移,而Ag/SnO_2(6)In_2O_3(4)触头的电弧侵蚀形貌则既有液体喷溅和汽化又有材料的转移。此外,讨论不同Ag/MeO(10)触头的电弧形貌的形成过程和机理。
基金
Project(2012QNZT003)supported by the Fundamental Research Funds for the Central Universities,China
Project(2012M521542)supported by the Postdoctoral Science Foundation of China
Project(14JJ3014)supported by the Hunan Provincial Natural Science Foundation of China
Project(BSh1202)supported by the Zhejiang Provincial Postdoctoral Scientific Research Foundation of China