期刊文献+

超临界二氧化碳布雷顿循环系统中材料的腐蚀行为 被引量:36

Corrosion Behavior of Alloys in Supercritical CO_2 Brayton Cycle Power Generation
下载PDF
导出
摘要 超临界二氧化碳(S-CO_2)布雷顿循环因其自身的技术优势在新型燃机、第四代核电、火电以及太阳能发电机组中具有潜在的应用。文中综述了目前有关S-CO_2布雷顿循环体系中材料的腐蚀行为以及超临界参数(温度、压力)对合金的腐蚀速率影响研究进展,重点介绍了水蒸气、含硫气体(1 mg/L量级)、空气掺杂等对超临界CO_2腐蚀行为影响规律及机理,并指出了现有研究的不足及未来研究的展开方向。 Supercritical carbon dioxide(S-CO_2) Brayton cycle has potential applications in the new gas turbine, the fourth generation nuclear power station, thermal power station and concentrated solar power station because of its unique advantages. This paper reviews the current works about corrosion behavior of materials in S-CO_2 Brayton cycle system, the effects of supercritical parameters(temperature and pressure) on corrosion rate of alloys. The effects of doped gas on the corrosion behavior and mechanism, such as steams, S-containing gas and air, were also reviewed. Furthermore, the deficiency of current research and future research expansion were pointed out for interests.
出处 《中国电机工程学报》 EI CSCD 北大核心 2016年第3期739-745,共7页 Proceedings of the CSEE
基金 国家自然科学基金项目(51301130) 华能集团科技项目(ZD-15-HJK04)~~
关键词 布雷顿循环 超临界二氧化碳 掺杂 腐蚀行为 Brayton cycle supercritical carbon dioxide doping corrosion mechanism
  • 相关文献

参考文献50

  • 1Chen Y, Lundqvist P, Johansson A, et al. A comparative study of the carbon dioxide transcritical power cycle compared with an organic rankine cycle with R123 as working fluid in Waste Heat Recovery[J]. Applied Thermal Engineering, 2006, 26(17-18): 2142-2147.
  • 2Thodla R, Ayello F, Sridhar N. Materials performance in supercritical CO2 environments[C]//CORROSION 2009. Atlanta, Georgia: NACE, 2009.
  • 3Mahaffey J, Kalra A. Materials corrosion in high temperature supercritical carbon dioxide[C]//The 4th International Symposium-Supercritieal CO2 Power Cycles. Pittsburgh, Pennsylvania, 2014.
  • 4Lee H J, Kim H, Jang C. structural materials in environment[C]//The 4th Supercritical CO2 Power Pennsylvania, 2014. Compatibility of candidate high-temperature S-C02 International Symposium- Cycles . Pittsburgh ,.
  • 5Kruizenga A, Fleming D. Materials corrosion concerns for supercritical carbon dioxide heat exchangers[C]// Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. Dusseldorf, Germany. ASME, 2014.
  • 6Chen Y, Lundqvist P. Analysis of supercritical carbon dioxide heat exchangers in cooling process[C]// International Refrigeration and Air Conditioning Conference. Purdue, USA, 2006.
  • 7Chen Y, Lundqvist P. Carbon dioxide cooling and power combined cycle for mobile applications[C]//7th IIR Gustav Lorentzen Conference on Natural Working Fluids. Trondheim, Norway, May 28-31, 2006.
  • 8Monje B, SLr~chez D, Savill M, et al. A design strategy for supercritical CO2 compressors[C]//Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. Dusseldorf, Germany, 2014: ASME.
  • 9Wang X F, Xi G, Wang Z H. Aerodynamic optimization design of centrifugal compressor's impeller with kriging model[J]. Proceedings of the Institution of Mechanical Engineers, PartA: Journal ofPowerandEnergy, 2006, 220(6): 589-597.
  • 10Sorokes J M. The practical application of CFD in the design of industrial centrifugal impellers[C]//Proceeding of the 22nd Turbomachinery Symposium. Dallas, TX: Texas A&M University, 1993.

二级参考文献17

  • 1DOE. A technology roadmap for generation IV nuclear energy systems[R]. US : DOM, 2002.
  • 2Dostal V,Driscoll M J, Hejzlar P. A supercritical carbon dioxide cycle for next generation nuclear reactors, MIT- ANP-TR-100[R]. Massachusetts : MIT, 2004.
  • 3Hejzlar P,Dostal V,Driscoll M J,et al. Assessment of gas cooled fast reactor with indirect supereritical CO2 cycle [J]. Nuclear Engineering and Technology (Special Issue on ICAPP 05) ,2006,38(2) :109-118.
  • 4Dyreby J J. Modeling the supercritical carbon dioxide brayton cycle with recompression[D]. Madison: Universi- ty of Wisconsin-Madison,2014.
  • 5Seidel W. Model development and annual simulation of the supercritical carbon dioxide brayton cycle for concen trating solar power applications[D]. Madison : University of Wisconsin-Madison, 2010.
  • 6Tsuzuki N, Kato Y, Ishiduka T. High performance prin ted circuit heat exchanger[J]. Applied Thermal Engineer- ing,2007,27(10) :1702-1707.
  • 7史丽生,王百荣.核反应堆冷却剂材料的选取分析[C]//中国核学会2011年年会论文集.贵阳:中国核学会,2011:266-271.
  • 8Torn S K S. The feasibility of using supercritical carbon dioxide as a coolant for the CANDU reactor[D]. BC: The University of British Columbia, 1978.
  • 9Kato Y, Nitawaki T, Yoshizawa Y. Carbon dioxide par- tial condensation direct cycle for advanced gas cooled fast and thermal reactors[J]. Bulletin-Research Labora- tory for Nuclear Reactors, 2001,25:91-92.
  • 10Pope M A,Lee J I, Hejzlar P, et al. Thermal hydraulic challenges of gas cooled fast reactors with passive safety features[J]. Nuclear Engineering and Design, 2009,239 (5) :840 -854.

共引文献30

同被引文献163

引证文献36

二级引证文献219

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部