期刊文献+

基于虚拟模型的四足机器人对角小跑步态控制方法 被引量:28

Control of the Quadrupedal Trotting Based on Virtual Model
原文传递
导出
摘要 为提高四足机器人对角小跑运动的稳定性,实现机器人躯干6维运动方向控制的解耦,提出了一种基于虚拟模型的对角小跑步态控制方法.控制器主要包括支撑相虚拟模型控制和摆动相虚拟模型控制.在支撑相,建立了作用于躯干质心的虚拟力与对角支撑腿关节扭矩之间的数学关系,通过调整躯干虚拟力的大小控制躯干的高度与姿态,控制机器人前进速度和自转角速度.在摆动相,将机器人侧向速度控制引入到足端轨迹规划中,并通过虚拟的"弹簧-阻尼"元件驱动摆动足沿给定轨迹运动.此外,在控制器设计过程中,引入了状态机,用于监控机器人各腿的状态,并输出对角小跑步态相位切换指令.仿真实验结果表明,机器人能够以对角小跑步态在平地上进行全方位移动,跨越不平坦地形,并能够抵抗外部冲击,证明了文中控制方法的有效性和鲁棒性. In order to improve the stability of the trotting quadruped robot and to decouple the control of the robot torso motion along six directions, an approach based on virtual model is presented for trot gait control. The controller mainly consists of two main modules: the virtual model control at support phase and the virtual model control at flight phase. During the support phase, the mathematical relationship are mapped between the joint torques of diagonal support legs and the virtual forces acted on the center-of-mass of the torso. And the values of virtual torso forces are regulated to control the torso attitude and height, as well as the forward velocity and the yaw angular velocity of the robot. During the flight phase, lateral velocity is introduced to plan the toe trajectory. And virtual spring-damper sections are implemented to drive the flight toes to track the planned trajectories. In addition, while designing the controller, a state machine is introduced to monitor the legs’ states and output phase switching commands for trot gait regulation. The simulations show that the robot is able to trot omnidirectionally on flat ground as well as uneven terrains, even suffering from external impacts. And thus the effectiveness and robustness of the controller are proved.
出处 《机器人》 EI CSCD 北大核心 2016年第1期64-74,共11页 Robot
基金 国家863计划(2015AA042201) 国家自然科学基金(61233014 61305130) 山东省自然科学基金(ZR2013FQ003 ZR2013EEM027) 中国博士后科学基金(2013M541912)
关键词 四足机器人 对角小跑步态 虚拟模型控制 quadruped robot trot gait virtual model control
  • 相关文献

参考文献21

  • 1Nanua P, Waldron K J. Energy comparison between trot, bound, and gallop using a simple model[J]. Journal of Biomechanical Engineering, 1995, 117(4): 466-473.
  • 2Kimura H, Fukuoka Y, Cohen A H. Adaptive dynamic walk- ing of a quadruped robot on natural ground based on biologicalconcepts[J]. International Journal of Robotics Research, 2007, 26(5): 475-490.
  • 3Matos V, Santos C E Omnidirectional locomotion in a quadruped robot: A CPG-based approach[C]//IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems. Piscatway, USA: IEEE, 2010: 3392-3397.
  • 4Barasuol V, Buchli J, Semini C, et al. A reactive controller framework for quadrupedal locomotion on challenging terrain [C]//IEEE International Conference on Robotics and Automa- tion. Piscataway, USA: IEEE, 2013: 2554-2561.
  • 5Xie H, Ahmadi M, Shang J, et al. An intuitive approach for quadruped robot trotting based on virtual model control[J]. Pro- ceedings of the Institution of Mechanical Engineers, Part I: Joumal of Systems and Control Engineering, 2015, 229(4): 342-355.
  • 6Kurazume R, Yoneda K, Hirose S. Feedforward and feedback dynamic trot gait control for quadruped walking vehicle[J]. Au- tonomous Robots, 2002, 12(2): 157-172.
  • 7Zhang S, Gao J Y, Duan X G, et al. Trot pattern generation for quadruped robot based on the ZMP stability margin [C] //Inter- national Conference on Complex Medical Engineering. Piscat- way, USA: IEEE, 2013: 608-613.
  • 8Ralbert M H. Legged robots that balance[M]. Cambridge, USA: MIT Press, 1986.
  • 9Raibert M H. Trotting, pacing and bounding by a quadruped robot[J]. Journal of Biomechanics, 1990, 23(suppl. 1): 79-98.
  • 10Raibert M, Blankespoor K, Nelson G, et al. Bigdog, the rough-terrain quadruped robot[C]//Proceedings of the 17th IFAC World Congress, vol.17. Laxenburg, Austria: IFAC, 2008: 10822-10825.

二级参考文献25

  • 1Raibert M, Blankespoor K, Nelson G, et al. BigDog, the rough- terrain quadruped robot[C]//Proceedings of the 17th Interna-tional Federation of Automation Control. Amsterdam, Nether- lands: Elsevier, 2008: 10822-10825.
  • 2Semini C, Tsagarakis N G, Guglielmino E, et al. Design of HyQ - A hydraulically and electrically actuated quadruped robot[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2011, 225(6): 831-849.
  • 3Boaventura T, Semini C, Buchli J, et al. Dynamic torque con- trol of a hydraulic quadruped robot[C]//IEEE International Con- ference on Robotics and Automation. Piscataway, USA: IEEE, 2012: 1889-1894.
  • 4Kim H K, Kwon O, Won D H, et al. Foot trajectory generation of hydraulic quadruped robots on uneven terrain[C]//Proceedings of the 17th IFAC World Congress. Amsterdam, Netherlands: El- sevier, 2008: 3021-3026.
  • 5Cai R B, Chen Y Z, Hou W Q, et al. Trotting gait of a quadruped robot based on the time-pose control method[J]. International Journal of Advanced Robotic Systems, 2013, 10: No.148.
  • 6Jiang Z Y, Li M T, Guo W. Running control of a quadruped robot in trotting gait[C]//IEEE International Conference on Robotics, Automation and Mechatronics. Piscataway, USA: IEEE, 2011: 172-177.
  • 7Wang X, Li M T, Wang P F, et al. Running and turning con- trol of a quadruped robot with compliant legs in bounding gait[C]//IEEE International Conference on Robotics and Au- tomation. Piscataway, USA: IEEE, 2011:511-518.
  • 8Cai R B, Chen Y Z, Lang L, et al. Inverse kinematics of a new quadruped robot control method[J]. International Journal of Ad- vanced Robotic Systems, 2013, 10: No.46.
  • 9Rong X W, Li Y B, Ruan J H, et al. Design and simulation for a hydraulic actuated quadruped robot[J]. Journal of Mechanical Science and Technology, 2012, 26(4): 1171-1177.
  • 10Masuda T, Kimura H, Takase K. Emergence of a quadrupedal bound gait as interaction among the brain, body and environ- ment[C]//Proceedings of SICE Annual Conference 2008 - In- ternational Conference on Instrumentation, Control and Infor- mation Technology. Tokyo, Japan: Society of Instrument and Control Engineers, 2008: 2501-2506.

共引文献58

同被引文献107

引证文献28

二级引证文献105

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部