期刊文献+

磁感应强度和冷却速率对Tb_(0.27)Dy_(0.73)Fe_(1.95)合金凝固过程中取向行为的影响 被引量:1

Influence of magnetic flux density and cooling rate on orientation behavior of Tb_(0.27)Dy_(0.73)Fe_(1.95) alloy during solidification process
下载PDF
导出
摘要 实验研究了磁感应强度和冷却速率对Tb_(0.27)Dy_(0.73)Fe_(1.95)合金凝固过程中(Tb,Dy)Fe_2相取向行为及合金磁性能的影响.结果表明,将强磁场作用于Tb_(0.27)Dy_(0.73)Fe_(1.95)合金的凝固过程可以制备出(Tb,Dy)Fe_2相沿<111>取向的组织,同时显著提高了合金的磁致伸缩性能;通过提高磁感应强度可以在更快的冷却速率下得到<111>取向的组织;在4-10 T范围内,随着冷却速率的增加,(Tb,Dy)Fe_2相沿<111>取向所需的磁感应强度增加,而发生(110)取向的磁感应强度减小.随着冷却速率的增加,合金的饱和磁化强度增加,而强磁场的施加对合金饱和磁化强度的变化没有明显影响.(Tb,Dy)Fe_2相的取向行为受*Tb,Dy)Fe_3相取向行为的影响,且由磁晶各向异性能与磁场作用时间共同控制. The rare-earth giant magnetostrictive material Tb(0.27)Dy(0.73)Fe(1.95) is one of the most important functional magnetic materials.Their superior properties include high saturation magnetostrictive coefficient at room temperature,high electromechanical coupling coefficients,high output power,fast response,high energy density,and non-contact drive.Thus,they can be used to build sensors,precision machinery,magnetomechanical transducers,and adaptive vibrationcontrol systems.In this material,the magnetic phase(Tb,Dy)Fe2 has a typical MgCu2-type cubic Laves phase structure and exhibits different magnetostrictive properties along different crystal orientations.The 111 direction of this phase is the easy magnetization axis,along which the linear magnetostriction is higher than other directions.Thus,researchers have focused on preparing(Tb,Dy)Fe2 with a crystallographic orientation along or close to the 111 direction.Generally,the directional solidification method is used to prepare the Tb(0.27)Dy(0.73)Fe(1.95) alloy.However,a crystal orientated along the 110 or 112 direction is always obtained and both of these directions require a high external magnetic field for improved magnetostrictive performance.The 111 preferred growth orientation can be acquired using seed crystal technology.However,the relatively low growth velocity can cause the appearance of the linear(Tb,Dy)Fe3 phase which induces a high brittleness of the material.Therefore,new methods to prepare Tb(0.27)Dy(0.73)Fe(1.95) products with high111 orientation at higher growth velocity are required.In this paper,we solidify the Tb(0.27)Dy(0.73)Fe(1.95) alloys under various high magnetic field and cooling rate conditions.We study the effects of the magnetic flux density and cooling rate on the crystal orientation of the(Tb,Dy)Fe2 phase and the magnetization behavior of the alloys.It is found that after field-treated solidification,a high 111 orientation of(Tb,Dy)Fe2 along the magnetic field direction can be produced.As a consequence,the magnetostriction without applying stress remarkably increases.By increasing the magnetic flux density applied during the solidification of the Tb(0.27)Dy(0.73)Fe(1.95) alloys,the 111 orientation of(Tb,Dy)Fe2 could be obtained at higher cooling rates.Ranging from 4 T to 10 T,with increasing cooling rate the magnetic flux density,at which the 111 or 110 orientation of(Tb,Dy)Fe2 occurs,increases or decreases,respectively.The saturated magnetization of the alloys increases with increasing cooling rate.The application of the magnetic fields does not affect the saturated magnetization.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2016年第3期335-342,共8页 Acta Physica Sinica
基金 国家自然科学基金(批准号:51425401 51574073 51174056) 中央高校基本科研业务费(批准号:N140901001 N130302005)资助的课题~~
关键词 磁感应强度 冷却速率 Tb(0.27)Dy(0.73)Fe(1.95)合金 晶体取向 magnetic flux density cooling rate Tb(0.27)Dy(0.73)Fe(1.95) alloy crystal orientation
  • 相关文献

参考文献3

二级参考文献40

  • 1王春江,王强,王亚勤,黄剑,赫冀成.强磁场对Al-Si合金凝固组织中硅分布的影响[J].物理学报,2006,55(2):648-654. 被引量:11
  • 2庞雪君,王强,王春江,王亚勤,李亚彬,赫冀成.强磁场对铝合金中溶质组元分布状态的影响效果[J].物理学报,2006,55(10):5129-5134. 被引量:5
  • 3Kieback B, Neubrand A, Riedel H 2003 Mater. Sci. Eng. A 362 81
  • 4Moon J, Caballero A C, Hozer L, Chiang Y M, Cima M J 2001 Mater. Sci. Eng. A 298 110
  • 5Stoloff N S 1999 Mater. Sci. Eng. A 261 169
  • 6Joo H D, Kim S U, Shin N S, Koo Y M 2000 Mater. Lett. 43 225
  • 7Joo H D, Choi J K, Kim S U, Shin N S, Koo Y M 2004 Metall. Mater. Trans. 35A 6 1663
  • 8Mogi I, Umeki C, Takahashi K, Awaji S, Watanabe K, Motokawa M 2003 J. Appl. Phys. 2 715
  • 9Tagami M, Hamai M, Mogi I, Watanabe K, Motokawa M 1999 J. Cryst. Growth. 203 594
  • 10Yoshioka N, Koshimura M, Ono M, Takahashi M, Miyazaki T 1988 J. Magn. Mater. 74 51

共引文献7

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部