摘要
对于运行在150~300km高度的超低轨航天器,气动力是轨道与姿态控制须考虑的主要扰动因素。文章首先剖析了超低轨航天器气动构型的关键要素,提出了本体截面与长细比、翼面形状与布局的设计准则;从来流特性、气体-表面作用、航天器物理特性3个方面阐述气动建模的内容与方法;综合运用射线跟踪平板(RTP)与试验粒子蒙特卡洛(TPMC)2种自由分子流模拟方法,提出一种适合工程应用的气动计算与飞行仿真流程。最后,以重力梯度测量卫星为实例,开展了初步的方案设计、模型确认与方法探索,验证了气动建模与计算流程的正确性。文章所提出的气动研究思路,对超低轨航天器的气动设计、计算等工作,均具有一定的参考意义。
Aerodynamic force is the major disturbance to orbit for ultra-LEO spacecraft at 150~ 300km altitude. The design principles for configuration of ultra-LEO spacecraft is introduced firstly, including shape of body, slenderness ratio, shape of wings and layout of wings. The ap- proaches to accurate aerodynamic modeling are illustrated in terms of properties of incident flow, gas-surface interaction and physics of spacecraft. The process for engineering calculation and flight simulation is proposed,which incorporates two methods including RTP (ray-tracing panel) and TPMC (test-particle Monte Carlo). Some aerodynamic researches on a satellite for measuring gravity gradient are conducted, and the method of modeling and the process of computation are validated. The approaches presented in this paper can be applied to aerodynamic design and calcu- lation of ultra-LEO spacecraft.
出处
《航天器工程》
北大核心
2016年第1期10-18,共9页
Spacecraft Engineering
关键词
超低轨航天器
气动设计
气动建模
气动分析
重力梯度测量卫星
ultra-LEO spacecraft
aerodynamic design
aerodynamic modeling
aerodynamic analy-sis
satellite for measuring gravity gradient