期刊文献+

深度卷积神经网络在计算机视觉中的应用研究综述 被引量:557

Applications of Deep Convolutional Neural Network in Computer Vision
下载PDF
导出
摘要 随着大数据时代的到来,含更多隐含层的深度卷积神经网络(Convolutional neural networks,CNNs)具有更复杂的网络结构,与传统机器学习方法相比具有更强大的特征学习和特征表达能力。使用深度学习算法训练的卷积神经网络模型自提出以来在计算机视觉领域的多个大规模识别任务上取得了令人瞩目的成绩。本文首先简要介绍深度学习和卷积神经网络的兴起与发展,概述卷积神经网络的基本模型结构、卷积特征提取和池化操作。然后综述了基于深度学习的卷积神经网络模型在图像分类、物体检测、姿态估计、图像分割和人脸识别等多个计算机视觉应用领域中的研究现状和发展趋势,主要从典型的网络结构的构建、训练方法和性能表现3个方面进行介绍。最后对目前研究中存在的一些问题进行简要的总结和讨论,并展望未来发展的新方向。 Deep learning has recently achieved breakthrough progress in speech recognition and image recognition. With the advent of big data era, deep convolutional neural networks with more hidden layers and more complex architectures have more powerful ability of feature learning and feature representation. Convolutional neural network models trained by deep learning algorithm have attained remarkable performance in many large scale recognition tasks of computer vision since they are presented. In this paper, the arising and development of deep learning and convolutional neural network are briefly introduced, with emphasis on the basic structure of convolutional neural network as well as feature extraction using convolution and pooling operations. The current research status and trend of convolutional neural net- works based on deep learning and their applications in computer vision are reviewed, such as image classi- fication, object detection, pose estimation, image segmentation and face detection etc. Some related works are introduced from the following three aspects, i. e. , construction of typical network structures, training methods and performance. Finally, some existing problems in the present research are briefly summarized and discussed and some possible new directions for future development are prospected.
出处 《数据采集与处理》 CSCD 北大核心 2016年第1期1-17,共17页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(61272247)资助项目
关键词 深度学习 卷积神经网络 图像识别 目标检测 计算机视觉 deep learning convolutional neural network image recognition object detection computer vision
  • 相关文献

参考文献59

  • 1Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60 (2) 91 110.
  • 2Dalai N, Triggs B. Histograms of oriented gradients for human detection[C]//Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society Conference on. San Diego, USA: IEEE, 2005, 1 886-893.
  • 3Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786) : 504-507.
  • 4麦麦提艾力.吐尔逊,戴礼荣.深度神经网络在维吾尔语大词汇量连续语音识别中的应用[J].数据采集与处理,2015,30(2):365-371. 被引量:12
  • 5Hubel D H, Wiesel T N. Receptive fields, binocular interaction and functional architecture in the catrs visual cortex[J]. The Journal of Physiology, 1962, 160(1): 106-154.
  • 6Fukushima K, Miyake S. Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in posi- tion[J]. Pattern Recognition, 1982, 15(6): 455-469.
  • 7Ruck D W, Rogers S K, Kabrisky M. Feature selection using a multilayer perceptron[J]. Journal of Neural Network Com- puting, 1990, 2(2): 40-48.
  • 8Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. Nature, 1986,3231 533 538.
  • 9LeCun Y, Denker J S, Henderson D, et al. Handwritten digit recognition with a back-propagation network[C]//Advances in Neural Information Processing Systems. Colorado, USA Is. n. ], 1990: 396-404.
  • 10LeCun Y, Cortes C. MNIST handwritten digit database[EB/OL], http//yann, lecun, com/exdb/mnist, 2010.

二级参考文献93

共引文献154

同被引文献3880

引证文献557

二级引证文献2916

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部