期刊文献+

一种动态的主动多分类方法

Dynamical Active Multiple Classification Method
下载PDF
导出
摘要 在面向大数据问题的应用领域中,由于现实世界的多样性和复杂性,经常会遇到大规模的多类别数据挖掘问题,传统的多分类方法一方面存在着超平面不平衡更新的问题,另一方面学习效率较低,对于复杂的多类别数据无法进行高效分类。针对这个问题,本文提出了一种改进的动态主动多分类(Dynamical active multiple classification,DYA)方法,该方法通过将死锁、激活等概念引入到主动多分类过程,在主动多分类过程中随着分类器的不断更新,动态地控制样本是否参与主动学习的过程;同时,采用分位计数、轮换学习方式的主动多分类方法,使得多类别的分类器能够得到平衡的学习和更新。实验结果表明,本文提出的动态主动多分类方法有效提高了模型的学习效率和泛化性能。 In the application of big data theory, there are many large scale multiple classification problems for the diversity and complexity of real world. However, the hyperplane updating of traditional multiple classification methods are not balanced. And the learning efficiency of them are low, and they are not efficient for the complex multiple classification data. To solve this problem, this paper presents an improved dynamical active multiple classification method (DYA). By combining the definitions of deadlock and activation with the active multiple classification process, the proposed method controls dynamically the status whether the sample is to be involved in the active learning process with the updating of classifier in it. Meanwhile, the active learning method with sub-bit counter and rotation learning approach is used to the balance learning and updating of classifier. The experiment results demonstrate that the proposed DYA method can improve both the learning efficiency and generalization performance.
出处 《数据采集与处理》 CSCD 北大核心 2016年第1期152-159,共8页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(61503229)资助项目 山西省自然科学基金(2015021096 2014011018-1)资助项目 山西省高等学校科技创新(2015110)资助项目 山西大学商务学院科研基金(2015009)资助项目
关键词 主动学习 多分类 动态主动多分类 分位计数 轮换学习 active learning multiple classifieation dynamical active multiple elassification sub-bit counter rotation learning
  • 相关文献

参考文献5

二级参考文献126

  • 1赵世奇,张宇,刘挺,陈毅恒,黄永光,李生.基于类别特征域的文本分类特征选择方法[J].中文信息学报,2005,19(6):21-27. 被引量:21
  • 2凌俊斌,庄卫华,刘鲁西.图像检索中的主动学习及其可测量性[J].计算机技术与发展,2006,16(2):132-134. 被引量:3
  • 3田春娜,高新波,李洁.基于嵌入式Bootstrap的主动学习示例选择方法[J].计算机研究与发展,2006,43(10):1706-1712. 被引量:8
  • 4Zhou Z H, Chen K J, Jiang Y. Exploiting unlabeled data in content-based image retrieval. In Proc. the 15th European Conf. Machine Learning ( ECML 2004), Pisa, Italy, Sept. 20- 24, 2004, pp.525-536.
  • 5Li M, Zhou Z H. Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples. IEEE Trans. Systems, Man and Cybernetics - Part A: Systems and Humans, 2007, 37(6): 1088-1098.
  • 6Levin A, Viola P, Freund Y. Unsupervised improvement of visual detectors using Co-Training. In Proc. the Int. Conf. Computer Vision, Graz, Austria, April 1-3, 2003, pp.626-633.
  • 7Nigam K, McCallum A K, Thrun S, Mitchell T. Text classification from labeled and unlabeled documents using EM. Machine Learning, 2000, 39(2/3): 103-134.
  • 8Kiritchenko S, Matwin S. Email classification with Co- Training. In Proc. the 2001 Conf. the Centre for Advanced Studies on Collaborative Research ( CASCON 2001), Toronto, Canada, Nov. 5-7, 2001, pp.8-19.
  • 9Nigam K, Ghani R. Analyzing the effectiveness and applicability of Co-Training. In Proc. the 9th Int. Conf. Information and Knowledge Management, McLean, USA, Nov. 6-11, 2000, pp.86-93.
  • 10Lewis D D, Gale A W. A sequential algorithm for training text classifiers. In Proc. the Special Interest Group on Info. Retrieval, Dublin, Irland, July 3-6, 1994, pp.3-12.

共引文献106

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部