摘要
本文将结构风险最小化原则引入极限学习机模型,建立了在考虑变形因子模式下大坝变形预报的正则化极限学习机模型。该模型不仅计算速度较快,而且具有较强的泛化能力。通过对实际工程监测数据的详细分析,结果表明正则化极限学习机模型可以避免原极限学习机模型会导致过学习现象发生的可能,且其预报精度要优于原极限学习机模型、支持向量机模型与BP神经网络模型。显示了将其应用于大坝变形数据分析与预报领域是完全行之有效的。
The structure risk minimization principle was introduced to extreme learning machine (ELM) model. Based on this, regularized extreme learning machine model of dam deformation prediction under considering deformation factors mode was built. Not only calculation speed of the model is very fast, but also generalization ability is very strong. By analyzing the results of an engineering example in detail, the results show that regularized ELM model can avoid the possibility of original ELM model which over learning phenomenon happened. Moreover, prediction precision of regularized ELM model is su and BP neural network model. So, regularized ELM model analysis and prediction.
出处
《贵州大学学报(自然科学版)》
2015年第6期57-61,共5页
Journal of Guizhou University:Natural Sciences
基金
国家自然科学基金资助项目(41404008)
精密工程与工程测量国家测绘地理信息局重点实验室开放基金项目资助(PF2015-12)
广西空间信息与测绘重点实验室开放基金资助项目(桂科能1103108-21)
江西数字国土重点实验室开放基金资助项目(DLLJ201408)
福州市科技计划资助项目(2011-S-84)
福州大学科技发展基金资助项目(2014-XQ-33)
关键词
结构风险最小化
正则化极限学习机
过学习
变形因子
大坝变形预报
structure risk minimization
regularized tors
dam deformation prediction perior to ELM model, support vector machine model is effectively applied to the field of dam deformation extreme learning machine
over learning
deformation factors
dam deformation prediction