期刊文献+

LiDAR点云支持下地物精细分类的实现方法 被引量:7

Method of Land Cover Refined Classification Supported by LiDAR Point Clouds
原文传递
导出
摘要 在遥感数据分类中,获取精细的地物类别无疑能够传递更加丰富的信息量,进一步加深对遥感数据的理解和解译。在机载LiDAR点云高程数据的支持下,提出并实现了遥感影像上地物精细分类的方法。为保证高精度地同种地物再划分,综合考虑配准、辅助数据源、首次回波、点云密度及影像空间分辨率4种因素,并重点解决了点云密度与影像空间分辨率不匹配的问题,利用决策树显著地提高了影像上建筑物、植被的分类数量,使点云与影像联合分类的优势得到体现,达到了分类精度与地物类别数量相统一的目的。 In the process of classification in remote sensing data, acquiring greater refinement of the land cover type can deliver undoubtedly more information and further deepen the comprehension and interpretation for remote sensing data. With the support of point clouds elevation data, the method of refined classification in remote sensing image is proposed and achieved out. In order to gain high accuracy of subdividing the same kind of land cover type,four factors are taken into consideration,which includes registration,supplementary data source,first echo and point clouds density and image spatial resolution, and the focus is placed on dealing with the problems of mismatch between point clouds density and image spatial resolution. Decision tree is developed to improve remarkably the classification quantity of buildings and vegeta- tion in this study,which represents superiority of classification of fusing point clouds and imagery and achieves the desired goal of the unity of classification accuracy and quantity.
出处 《遥感技术与应用》 CSCD 北大核心 2016年第1期165-169,共5页 Remote Sensing Technology and Application
基金 国家自然科学基金项目"属性匹配在多源空间数据融合中的研究"(41201391)资助
关键词 机载LIDAR 精细分类 归一化高度 首次回波 决策树 Airborne LiDAR Refined classification Normalized Height(NH) First echo Decision tree
  • 相关文献

参考文献8

  • 1Lodha S K, Kreps E J, Helmbold D P, et al. Aerial LiDAR Data Classification Using Support Vector Machines (SVM) I- C~ //IEEE Proceedings of the Third International Conference on 3D Data Pro- cessing Visualization and Transmission ,2006 : 567-574.
  • 2Antonarakis A S, Richards K S, Brasington J. Object-based I.and Cover Classification Using Airborne LiDAR[J]. Remote Sensing of Environment, 2008,112 (6) .- 2988-2998.
  • 3余柏蒗,刘红星,吴健平.一种应用机载LiDAR数据和高分辨率遥感影像提取城市绿地信息的方法[J].中国图象图形学报,2010,15(5):782-789. 被引量:24
  • 4Sasaki T, Imanishi J, Ioki K, et al. Object-based Classification of I.and Cover and Tree Species by Intergrating Airborne Li- DAR and High Spatial Resolution Imagery Data[J]. Inter-national Consoritium of Landscape and Ecological Engineering and Springer,2011,8(2) ~ 157-171.
  • 5曹林,许子乾,代劲松,王靖琦,羌鑫林,佘光辉.基于LiDAR和CCD数据的地形与建筑提取方法优化及精度评价[J].遥感技术与应用,2014,29(1):130-137. 被引量:5
  • 6杨娜,秦志远,朱艳,唐德瑾.面向对象的机载LiDAR点云滤波方法[J].测绘科学技术学报,2014,31(2):157-161. 被引量:5
  • 7Garcia M, Riafio D, Chuvieco E, et a l. Muti-spectral and LiDAR Data Fusion for Fuel Type Mapping Using Support Vector Ma- chine and Decision Rules[J]. Remote Sensing of Enviroment, 2011,115(6) :1369-1379.
  • 8Brennan R,Webster T L. Object-oriented Land Cover Classifi- cation of LiDAR-derived SurfacesI-J]. Canadian Journal of Re- mote Sensing, 2006,32(6) : 162-172.

二级参考文献44

  • 1熊轶群,吴健平.面向对象的城市绿地信息提取方法研究[J].华东师范大学学报(自然科学版),2006(4):84-90. 被引量:18
  • 2蒋晶珏,张祖勋,明英.复杂城市环境的机载Lidar点云滤波[J].武汉大学学报(信息科学版),2007,32(5):402-405. 被引量:38
  • 3Taha H,Douglas S,Haney J.Mesoscale meteorological and air quality impacts of increased urban albedo and vegetation[J].Energy and Buildings,1997,25(2):169-177.
  • 4Akbari H.Shade trees reduce building energy use and CO2 emissions from power plants[J].Environmental Pollution,2002,116:S119-S126.
  • 5中华人民共和国建设部.城市绿化规划建设指标的规定[S].建城[1993]784号.
  • 6Barr S,Barnsley M.Reducing structural clutter in land cover classifications of high spatial resolution remotely-sensed images for urban land use mapping[J].Computers & Geosciences,2000,26(4):433-449.
  • 7Baatz M,Schape A.Multiresolution segmentation--An optimization approach for high quality multi-scale image segmentation[C]//Strobl J,Baschke T,Griesebner G(eds).Angewandte Geographische Informationsverarbeitung XII.Heidelberg,Germany:Wichmann-Verlag,2000:12-23.
  • 8Benz UC,Hofmann P,Willhauck G,et al.Multi-resolution,object-oriented fuzzy analysis of remote sensing data for GIS-ready information[J].ISPRS Journal of Photogrammetry and Remote Sensing,2004.58(3-4):239-258.
  • 9Shackelford A K,Davis C H.A combined fuzzy pixel-based and object-based approach for classification of high-resolution multispectral data over urban areas[J].IEEE Transactions on Geoscience and Remote Sensing,2003,41(10):2354-2363.
  • 10Wang L,Sousa W P,Gong P.Integration of object-based and pixel-based classification for mapping mangroves with Ikonos imagery[J].International Journal of Remote Sensing,2004,25(24):5655-5668.

共引文献31

同被引文献56

引证文献7

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部