期刊文献+

基于PHD的多目标检测前跟踪改进方法 被引量:5

An Improved Multitarget Track-Before-Detect Algorithm Based on Probability Hypothesis Density Filter
下载PDF
导出
摘要 基于概率假设密度粒子滤波的多目标检测前跟踪方法(PF-PHD-TBD)存在目标数目估计不准确、状态估计精度不高等问题。借鉴Rao-Blackwellised粒子滤波(RBPF)将目标的状态空间进行降维分解,分别采用线性与非线性滤波器进行跟踪的思想,在PF-PHD-TBD的预测与更新过程中采用RBPF方法,以最优卡尔曼滤波对目标速度分量进行处理,以粒子滤波对位置分量进行处理,显著降低了运算复杂度,相比仅使用粒子滤波时过分依赖目标位置信息的缺点,充分利用了位置与速度之间的关联特性,提高了目标数目估计的准确度和状态估计的精度。最后用仿真实验验证了所提方法的有效性。 The particle probability hypothesis density filter based track-before-detect(PF-PHD-TBD) always exhibits poor performance in the estimation of targets' number and state. In consideration of the Rao- Blackwellised particle filter (RBPF) usually dividing targets' state dimensions and independently estimating the linear/nonlinear state component with linear/nonlinear filters, we apply RBPF in the predicting and updating steps in PF-PHD-TBD to estimate the speed component with optimal Kalman filter and the position com- ponent with particle filter, which apparently reduces the computation complexity, and enhances the accuracy of the estimation of the targets' number and precision of states, due to making full use of the correlation characteristics between speed and position. Finally, simulation shows the efficiency of the proposed method.
出处 《雷达科学与技术》 北大核心 2016年第1期1-6,共6页 Radar Science and Technology
基金 国家自然科学基金(No.61201445 61179017) "泰山学者"建设工程经费资助项目
关键词 Rao-Blackwellised粒子滤波 概率假设密度滤波 多目标检测前跟踪 线性状态 非线性状态 Rao-Blackwellised particle filter probability hypothesis density filter multitarget track-before-detect linear states nonlinear states
  • 相关文献

参考文献17

  • 1王云奇,孔令讲,易伟,杨晓波.一种耦合检测和JPDA滤波的多目标跟踪算法[J].雷达科学与技术,2014,12(2):143-148. 被引量:3
  • 2尹帅,袁俊泉,吴顺华,王利才.一种改进的JIPDA多目标跟踪算法[J].雷达科学与技术,2014,12(3):285-290. 被引量:6
  • 3BOERS Y, DRIESSEN J N. Multitarget Particle Fil- ter Track-Before-Detect Application[J]. IEE Proceed- ings Radar. Sonar and Navigation, 2004, 151(6) :351- 357.
  • 4MAHLER R. Multitarget Bayes Filtering via First- Order Multitarget Moments[J]. IEEE Trans on Aer- ospace and Electronics Systems, 2003, 39(4).. 1152- 1178.
  • 5VO B N, S1NGH S, DOUCET A. Sequential Monte Carlo Methods for Muhitarget Filtering with Random Finite Sets[J]. IEEE Trans on Aerospace and Elec- tronics Systems. 2005. 41(4) .. 1224-1245.
  • 6VO B N, MAW K. The Gaussian Mixture Probabili- ty Hypothesis Density Filter[J]. IEEE Trans on Sig- nal Processing, 2006, 5,1( 11 ) ..4091-4104.
  • 7PUNITHAKUMAR K, KIRUBARAJAN T, SINHA A. A Sequential Monte Carlo Probability Hypothesis Densily Algorithm for Multitargct Track-Before- Detect[C]//17th Conference on Signal and Data Pro- cessing of Small Targets, San Diego, CA: SHE, 2005:1-8.
  • 8HABTEMARIAM B K, THARMARASA R, KIRUBARAJAN T. PHD Filter Based Track-Be- fore-Detect for MIMO Radars[J]. Signal Process- ing, 2012, 92(3) :667-678.
  • 9林再平,周一宇,安玮.改进的概率假设密度滤波多目标检测前跟踪算法[J].红外与毫米波学报,2012,31(5):475-480. 被引量:20
  • 10占荣辉,刘盛启,欧建平,张军.基于序贯蒙特卡罗概率假设密度滤波的多目标检测前跟踪改进算法[J].电子与信息学报,2014,36(11):2593-2599. 被引量:13

二级参考文献101

  • 1田淑荣,王国宏,何友.多目标跟踪的概率假设密度粒子滤波[J].海军航空工程学院学报,2007,22(4):417-420. 被引量:10
  • 2熊伟,何友,张晶炜.多传感器顺序粒子滤波算法[J].电子学报,2005,33(6):1116-1119. 被引量:11
  • 3曲长文,黄勇,苏峰.基于动态规划的多目标检测前跟踪算法[J].电子学报,2006,34(12):2138-2141. 被引量:27
  • 4Schon T, Gustafsson F, Nordlund P J. Marginalized particle filters for mixed linear/nonlinear state-space models[J].IEEE Transaction on Signal Processing, 2005, 53(7): 2279 -2289.
  • 5Schon T, Karlsson R, Gustafsson F. The marginalized particle filter in practice[R]. Linkoping: Linkoping University, LiTH-ISY-R 2715, 2005.
  • 6Anderson B D O, Moore J B. Optimal filtering[M]. Engle wood Ciffs, NJ: Prentice-Hall, 1979.
  • 7Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear/non Gaussian Bayesian state estimation [J]. IEE Proceedings F, 1993, 140(2): 107-113.
  • 8Arulampalam M S, Maskelli S, Gordon N, et al. A tutorial on particle filters for online nonlinear non-Gaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188.
  • 9Karlsson R, SchOn T. Complexity analysis of the marginalized particle filter[R]. Linkoping: Linkoping University, LiTHISY-R-2611 , 2004.
  • 10Doucet A, Gordon N J, Krishnamurthy V. Particle filters for state estimation of jump Markov linear systems[J]. IEEE Transactions on Signal Processing, 2001, 49(3), 613-624.

共引文献72

同被引文献45

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部