期刊文献+

基于动态稀疏保局投影的故障检测方法 被引量:7

Fault detection method based on dynamic sparse locality preserving projections
下载PDF
导出
摘要 针对保局投影(locality preserving projections,LPP)没有考虑过程数据的全局信息和动态性的问题,提出一种新的基于动态稀疏保局投影(dynamic sparse locality preserving projections,DSLPP)的故障检测方法。该方法首先将原始数据矩阵扩展为考虑时序相关的增广矩阵,然后通过求解最优稀疏表示(sparse representation,SR)问题,得到能够表示数据全局稀疏重构关系的稀疏系数矩阵,并将其与LPP算法结合,构建综合考虑数据局部和全局关系的目标函数进行数据降维,最后分别在特征空间和残差空间构造T2统计量和Q统计量进行故障检测。TEP的仿真结果表明,与LPP方法相比,新方法能更迅速检测故障发生并降低过程监控漏报率。 In order to deal with the problem that locality preserving projections (LPP) does not take into account the global structure and dynamic characteristic of process data, a new fault detection method based on dynamic sparse locality preserving projections (DSLPP) is proposed. In the study, the original data matrix is firstly extended to a time-delay augmented matrix. Then, a sparse coefficient matrix which can represent global sparse reconstructive relationship of data is gotten by solving an optimal problem of sparse representation (SR). The sparse coefficient matrix combines with the objective function of LPP to form a new objective function for dimensionality reduction. The new dimensionality reduction algorithm can not only preserve the local neighbor structure of the original data space, but also have better effect in preserving the global sparse reconstructive relationship. At last, DSLPP-based T^2 and Q statistics are constructed respectively in the feature space and residual space for fault detection. The simulation results of Tennessee Eastman process demonstrate that the proposed method detects faults more quickly and achieves lower fault missing alarm rate than the LPP method.
出处 《化工学报》 EI CAS CSCD 北大核心 2016年第3期833-838,共6页 CIESC Journal
基金 国家自然科学基金项目(61273160) 中央高校基本科研业务费专项资金(14CX06132A)~~
关键词 故障检测 保局投影 稀疏表示 特征提取 过程监控 fault detection locality preserving projections sparse representation feature extraction process monitoring
  • 相关文献

参考文献20

  • 1CHIANG L H, BRAATZ R D, RUSSELL E L. Fault Detection and Diagnosis in Industrial Systems[M]. Springer Science & Business Media, 2001.
  • 2QIN S J. Survey on data-driven industrial process monitoring and diagnosis[J]. Annual Reviews in Control, 2012, 36 (2): 220-234.
  • 3王海清,宋执环,王慧.PCA过程监测方法的故障检测行为分析[J].化工学报,2002,53(3):297-301. 被引量:55
  • 4LI G, QIN S J, ZHOU D. Geometric properties of partial least squares for process monitoring[J]. Automatica, 2010, 46 (1): 204-210.
  • 5SCH?LKOPF B, SMOLA A, MüLLER K R. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Computation, 1998, 10 (5): 1299-1319.
  • 6TENENBAUM J B, SILVA V D, LANGFORD J C. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 290 (5500): 2319-2323.
  • 7ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290 (5500): 2323-2326.
  • 8BELKIN M, NIYOGI P. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Computation, 2003, 15 (6): 1373-1396.
  • 9HE X F, NIYOGI P. Locality preserving projections[C]//Proceedings of Advances in Neural Information Processing Systems. MIT Press, 2004: 153-160.
  • 10HU K, YUAN J. Multivariate statistical process control based on multiway locality preserving projections[J]. Journal of Process Control, 2008, 18 (7): 797-807.

二级参考文献31

  • 1MacGregor J F,Jaeckle C,Kiparissides C,Koutoudi M,AIChE J.,1994,40(5):826-838
  • 2Gertler G,Li W,Huang T,McAvoy T.AIChE J.,1999,45(2):323-334
  • 3Jackson J E, Mudholkar G S.Technometrics,1979,21(3):341-349
  • 4Montogomery D C.Introduction to Statistical Quality Control.Now York: John Wiley & Sons,Inc.,1990
  • 5Tu J L,Liu X M,Tu P. On optimizing subspaces for face recognition[A].New York,USA:IEEE Computer Society,2009.1149-1156.
  • 6Lu J W,Tan Y P. Cost-sensitive subspace learning for face recognition[A].San Francisco,CA:IEEE Computer Society,2010.2661-2666.
  • 7Rao A,Noushath S. Subspace methods for face recognition[J].Computer Science Review,2010,(1):1-17.
  • 8Wang Y,Wu Y. Face recognition using intrinsicfaces[J].{H}Pattern Recognition,2010,(10):3580-3590.
  • 9Turk M A,Pentland A P. Eigenface for recognition[J].{H}Journal of Cognitive Neuroscience,1991,(1):71-68.
  • 10Baelhumeur P N,Hespanha J P,Kriegman D J. Eigenfaces vs.Fisherfaces:recognition using class specific linear projection[J].{H}IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,(7):711-720.

共引文献109

同被引文献43

引证文献7

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部