期刊文献+

基于动态数据挖掘的物流信息智能分析策略研究 被引量:13

Research on the Intelligent Analyzing Strategies of Logistics Information Based on Dynamic Data Mining
原文传递
导出
摘要 智能化的物流信息分析策略与方法对于提高物流信息管理与服务质量、促进物流信息管理理论的发展、推动物流企业信息化应用具有重要价值。文章针对物流信息的动态特征,以动态数据挖掘技术为核心,提出了基于动态数据挖掘的物流信息智能分析策略,包括基于流数据挖掘的物流信息实时分析策略、基于动态关联挖掘的物流信息多主体分析策略、基于云挖掘的物流信息并行分析策略、基于语义网格挖掘的物流信息多维分析策略等。研究表明,在提高物流信息分析的自动化程度与智能化水平、提升物流信息处理的质量与效率等方面,基于动态数据挖掘的智能分析策略具有显著的效果。 The intelligent analyzing strategy and method of logistics information are vital to improve the management and service quality of logistics information and connect the management theory of information logistics with the information building of logistics enterprise. According to the dynamic features of logistics information, this paper proposes the intelligent analyzing strategies of logistics information based on dynamic data mining. Dynamic data mining technology is the core of the intelligent analyzing strategies which include the real-time analyzing strategy based on stream data mining,the multi-agent analyzing strategy based on dynamic association mining, parallel analyzing strategy based on cloud mining,the multi-dimensional analyzing strategy based on semantic grid mining, et al. This research shows that the intelligent analyzing strategies based on dynamic data mining can significantly improve the level of automation and intelligence,and also can improve the quality and efficiency of logistics information processing.
出处 《图书馆学研究》 CSSCI 2016年第5期46-49,共4页 Research on Library Science
基金 国家自然科学基金项目"基于动态数据挖掘的物流信息智能分析研究"(项目编号:71373197) 武汉东湖学院青年基金"电子商务发展趋势对农村经济的影响机制研究"(武东院研字[2014]11号)的研究成果之一
关键词 智能分析策略 动态数据挖掘 物流信息 intelligent analyzing strategies dynamic data mining logistics information
  • 相关文献

参考文献13

  • 1岑磊.物流信息化影响因素的实证分析——基于2000-2011年省际面板数据[J].物流技术,2013,32(11):438-440. 被引量:4
  • 2Eleni M, Ilias PV. The Changing Role of Information Technology in Food and Beverage Logistics Management: Beverage Network Optimization Using Intelligent AgentTechnology [ J ]. Journal of Food Engineering, 2005 (3) : 403 - 420.
  • 3G. T. S. Ho, et al. An Intelligent Information Infrastructure to Support the Streamlining of Integrated Logistics Workflow [J]. Expert Systems, 2004 (3) : 123 -131.
  • 4Waszkielewicz W, Jonczyk A, Polak, D, G6rniak, A. Analysis of Material and Information Flows in the Logistic System of a Selected Steelworks [J]. : Metalurgija, 2005 (4) : 311 -314.
  • 5Kuhnt S, Wenzel S. Information Acquisition for Modelling and Simulation of LOgistics Networks [ J]. Journal of Simulation, 2010 (2): 109-115.
  • 6Paul A, Saravanan V, Thangaiah P.R.J..Data Mining Analytics to Minimize Logistics Cost [ J]. International Journal of Advances in Science and Technology, 2011 (3) : 89 - 107.
  • 7Ting S. L, Tse Y. K. Mining Logistics Data to Assure the Quality in a Sustainable Food Supply Chain: A Case in the Red Wine Industry [Jl .International Journal of Production Economics, 2014 (2) : 124-135.
  • 8宋崇智,吴玉国,谢能刚,王璐.基于神经网络的敏捷制造业自动化物流信息预测的研究与实现[J].中国机械工程,2007,18(15):1819-1821. 被引量:4
  • 9祖巧红,郭芳,曹萌萌.数据挖掘服务在物流配送规划中的应用[J].武汉理工大学学报(信息与管理工程版),2011,33(6):1007-1010. 被引量:7
  • 10赵军,王晓.基于数据挖掘的第三方物流中心库存需求预测模型[J].物流技术,2014,33(2):148-150. 被引量:9

二级参考文献34

  • 1肖冰,廖国凡.数据挖掘及其运用于设计物流配送方案的设想[J].邵阳学院学报(自然科学版),2006,3(4):32-34. 被引量:1
  • 2丁兆青,董传良.基于SOA的分布式应用集成研究[J].计算机工程,2007,33(10):246-248. 被引量:60
  • 3李德毅.云计算中的软件和软件开发[EB/OL].(2010-06-02)[2011-01-03].http://tech.sina.com.cn/it/2010-06-02/17354262863.shtml.
  • 4PAN W T, CHEN P W. A study on the logistic service satisfaction for internet marketing enterprise using data mining technology [ J ]. Advanced Institute of Convergence Information Technology,2011 (3) : 114 - 120.
  • 5LI J, SONG B. Web services integration on data mining based on SOA [ J ]. International Symposium on Intelli- gence Information Processing and Trusted Computing, 2010(2) :532 -534.
  • 6NEJAD S K, SEIFI F, AHMADI H, etal. Applying data mining in prediction and classification of urban traffic [ J]. World Congress on Computer Science and Information Engineering, 2009 (3) :674 - 678.
  • 7WANG D P,XU X J. Analysis and design of the logistics information system based on data mining[ C ]//Imema- tional Conference on Intenigent Computation Technology and Automation. [ S. l ] : [ s. n. ] ,2010:635 - 638.
  • 8王志春.基于云计算的海量数据挖掘[EB/OL].http://caai.cn/contents/420/4047.html.
  • 9Talia D,Trunfio P.How distributed data mining tasks can thrive as knowledge services[J].Communications of the ACM, 2010, 53(7): 132-137.
  • 10Ghemawat S, Gobioff H,Leung Shun-Tak.Google. The Google File System[C]. New York,USA:SOSP' 03, Bolton Landing, 2003: 19-22.

共引文献27

同被引文献88

引证文献13

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部