期刊文献+

常规MRI纹理分析鉴别脑胶质母细胞瘤和单发转移瘤的价值 被引量:63

Differentiation of glioblastomas and solitary metastatic brain tumors using texture analysis of conventional MRI
原文传递
导出
摘要 目的探讨常规MRI纹理分析鉴别脑胶质母细胞瘤和单发转移瘤的价值。方法搜集我院经病理证实为脑胶质母细胞瘤和单发转移瘤的病例各34例。所有患者术前均行常规MRI检查,包括轴面T1WI、T2WI、液体衰减反转恢复(FLAIR)序列及增强T1WI。采用MaZda软件通过手动勾画ROI的方式提取病变的纹理特征,特征选择方法包括交互信息(MI)、Fisher系数、分类错误概率联合平均相关系数(POE+ACC)及上述3种方法联合法(FPM)。这些方法中首先选择最具有鉴别胶质母细胞瘤和转移瘤的纹理特征,然后采用统计方法判别这两种病变。特征分类统计方法包括原始数据分析(RDA)、主要成分分析(PCA)、线性分类分析(LDA)和非线性分类分析(NDA)。判断结果以错判率形式表示。同时请2名分别具有5年和9年神经影像诊断经验的高级职称医师共同评估68例患者的影像资料。采用χ2检验比较医师判断结果和纹理分析判断结果的差异。结果4种序列中,鉴别颅内胶质母细胞瘤和单发转移瘤的纹理特征主要来自T:WI序列,误判率最小为8.82%(6/68)。特征选择方法中,M1、Fisher系数和POE+ACC鉴别两种疾病的错判率较为接近,MI为10.29%~27.94%,Fisher系数为11.76%~44.12%,POE+ACC为8.82%~38.24%,3种方法联合选择的纹理特征鉴别两种病变的错判率低(8.82%~33.83%)。特征统计方法中,NDA区分两种病变的错判率(8.82%~11.76%)均较RDA(26.47%~39.71%)、PCA(27.94%~39.71%)和LDA(13.24%~44.12%1低。影像医师的错判率为14.71%(10/68),较采用纹理分析鉴别两种病变的错判率高,但两者差异无统计学意义(χ2=10.993,P=0.287)。结论常规MRI纹理分析可用于鉴别脑胶质母细胞瘤和单发转移瘤,为鉴别两者提供可靠的客观依据。 Objective To investigate the diagnostic value of the texture analysis derived from conventional MR imaging in differentiating glioblastomas from solitary brain metastases. Methods Thirty- four patients with pathological diagnoses of glioblastomas and 34 patients with pathological diagnoses of solitary brain metastases were enrolled in our study. All patients underwent conventional MR imaging including axial T1WI, T2WI, fluid attenuated inversion recovery (FLAIR) and contrast-enhanced T1WI before surgery. Texture features were calculated from manually drawn ROIs by using MaZda software. The feature selection methods included mutual information (MI), Fishers coefficient, classification error probability combined with average correlation coefficients (POE+ACC) and the combination of the above three methods. These methods were used to identify the most significant texture features in discriminating glioblastomas from metastases. Then the statistical methods including raw data analysis (RDA), principal component analysis (PCA), linear discriminant analysis (LDA) and nonlinear discriminant analysis (NDA) were used to distinguish glioblastomas from metastases. The results were shown by misclassification rate. Meanwhile, two senior radiologists (who had 5 and 9 years of experience in neuroimaging diagnosis, respectively) analysed the data of the 68 patients. Chi-square test was used to compare the differences in the results between the radiologists' analysis and the texture analysis. Results In the four kinds of sequences, the texture features for differentiating glioblastomas from solitary brain metastases were mainly from T2WI which had the lowest misclassification rate, 8.82% (6/68). The misclassification rates of the feature selection methods were similar in MI, Fisher's coefficient and POE + ACC (10.29%-27.94% for MI; 11.76%-44.12% for Fisher's coefficientand 8.82%-38.24% for POE+ACC). However, the misclassification rate of the combination of the three methods (8.82%-33.83% for FPM) was lower than that of any other kind of method. In the statistical methods, NDA (8.82%-11.76%) had lower misclassification rate than RDA (26.47%-39.71%), PCA (27.94%-39.71%) and LDA (13.24%-44.12%). Misclassification rate of the radiologists' analysis 14.71% (10/68) was higher than that of the texture analysis, but there was no statistically difference between them (χ2= 10.993, P=0.287). Conclusion Texture analysis of conventional MR imaging can provide reliably objective basis for differentiating glioblastoma from solitary brain metastasis.
出处 《中华放射学杂志》 CAS CSCD 北大核心 2016年第3期186-190,共5页 Chinese Journal of Radiology
基金 广州市科技计划项目(2014J4100071) 广东省科技计划项目(20138021800063)
关键词 胶质母细胞瘤 磁共振成像 诊断 鉴别 Glioblastoma Solitary metastatic brain tumor , Magnetic resonance imaging Differential diagnosis
  • 相关文献

参考文献15

  • 1Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classification of tumours of the central nervous system[J]. Acta Neuropathol, 2007, 114(2): 97-109.
  • 2Giese A, Westphal M. Treatment of malignant glioma: a problem beyond the margins of resection[J]. J Cancer Res Clin Oncol, 2001, 127(4): 217-225.
  • 3Peters S, Kntil N, Wodarg F, et aL Glioblastomas vs. lymphomas: more diagnostic certainty by using susceptibility-weighted imaging (SWI)[J]. Rofo, 2012, 184(8): 713-718.
  • 4Maurer MH, Synowitz M, Badakshi H, et al. Glioblastoma muhiforme versus solitary supratentorial brain metastasis: differentiation based on morphology and magnetic resonance signal characteristics[J]. Rofo, 2013, 185(3): 235-240.
  • 5Byrnes TJ, Barrick TR, Bell BA, et al. Diffusion tensor imaging discriminates between glioblastoma and cerebral metastases in vivo[J]. NMR Biomed, 2011, 24(1): 54-60.
  • 6Halshtok Neiman O, Sadetzki S, Chetrit A, et al. Perfusion-weighted imaging of peritumoral edema can aid in the differential diagnosis of glioblastoma mulltiforme versus brain metastasis[J]. Isr Med Assoc J, 2013, 15(2): 103-105.
  • 7张劲松,宦怡,常英娟,葛雅丽,赵海涛,魏梦绮.扩散加权成像在高分化胶质瘤和转移瘤中的鉴别价值[J].中华放射学杂志,2005,39(10):1013-1017. 被引量:21
  • 8张皓,沈天真,陈星荣,缪竞陶,解学乾.MR灌注成像在鉴别单发脑转移瘤与高级别胶质瘤中的价值[J].中华放射学杂志,2006,40(4):393-396. 被引量:25
  • 9Castellano G, Bonilha L, Li LM, et al. Texture analysis of medical images[J]. Clin Radiol, 2004, 59(12): 1061-1069.
  • 10Kassner A, Thornhill RE. Texture analysis: a review of neurologic MR imaging applications[J]. AJNR Am J Neuroradiol, 2010, 31(5): 809-816.

二级参考文献22

  • 1Holodny AI, Ollenschlager M. Diffusion imaging in brain tumors. Neuroimaging Clin N Am , 2002 ,12:107-124.
  • 2Muti M, Aprile I, Principi M, et al.Study on the variations of the apparent diffusion coefficient in areas of solid tumor in high grade gliomas. Magn Reson Imaging, 2002 , 20: 635-641.
  • 3Caramia F, Pantano P, Di Legge S, et al. A longitudinal study of MR diffusion changes in normal appearing white matter of patients with early multiple sclerosis. Magn Reson Imaging,2002,20:383-388.
  • 4Bernarding J, Braun J, Koennecke HC. Diffusion- and perfusion-weighted MR imaging in a patient with acute demyelinating encephalomyelitis (ADEM). J Magn Reson Imaging, 2002,15: 96-100.
  • 5Sinha S, Bastin ME, Whittle IR, et al.Diffusion tensor MR imaging of high-grade cerebral gliomas. AJNR , 2002 ,23:520-527.
  • 6Lam WW, Poon WS, Metreweli C. Diffusion MR imaging in glioma: does it have any role in the pre-operation determination of grading of glioma? Clin Radiol, 2002 ,57:219-225.
  • 7Kono K, Inoue Y, Nakayama K, et al. The role of diffusion-weighted imaging in patients with brain tumors. AJNR , 2001 , 22 :1081-1088.
  • 8Schaefer PW, Grant PE, Gonzalez RG. Diffusion-weighted MR imaging of the brain. Radiology,2000,217:331-345.
  • 9Stadnik TW, Chaskis C, Michotl E, et al. Diffusion-weighted MR imaging of intracerebral masses: comparison with conventional MR imaging and histologic findings. AJNR , 2001 ,22:969-976.
  • 10Lu S, Ahn D, Johnson G, et al. Peritumoral diffusion tensor imaging of high-grade gliomas and metastatic brain tumors. AJNR , 2003, 24:937-941.

共引文献42

同被引文献264

引证文献63

二级引证文献578

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部