摘要
量子游走具有与经典随机游走不同的特性,因此它已经被用来解决包括元素区分、组合优化、图同构等问题。考虑量子游走和聚类两个领域,提出了一个基于一维三态离散量子游走的聚类算法。在该算法中,将数据点看作游走粒子;然后,这些粒子执行三态量子游走,接着根据粒子的测量结果更新数据点的属性值;最后,属于同一簇的数据点将会聚集,而属于不同簇的数据点将会分离。仿真实验结果表明了所提算法的有效性。
As compared to classical random walk,quantum walk exhibits some remarkably different features.Thus,it has been exploited to solve some kinds of problems,e.g.element distinctness,combinatorial optimization,graph matching problem and so on.Considering the two related research fields of quantum walks and data cluster analysis,a quantum clustering algorithm based on the one-dimensional three-state quantum walk was proposed.In this algorithm,each data point is regarded as one particle.Then,these particles perform the three-state quantum walk.After that,according to the measurement results,the attribute values of the corresponding data points are updated.At last,the data points belonging to the same group will gather together,while those belonging to different group will be separated.The simulation results demonstrate that the proposed algorithm is effective.
出处
《计算机科学》
CSCD
北大核心
2016年第3期80-83,共4页
Computer Science
基金
国家自然科学基金项目(61202451)
福建省教育厅重点项目(JA12062)资助
关键词
量子游走
无监督学习
数据聚类
量子计算
Quantum walk
Unsupervised learning
Data clustering
Quantum computation