期刊文献+

基于参数化无梯度方法的形状优化 被引量:1

A GRADIENT-LESS PARAMETER APPROACH FOR SHAPE OPTIMIZATION
下载PDF
导出
摘要 采用参数化无梯度方法,针对机械结构在外力作用下,局部出现应力集中现象,进行了形状优化。被优化的边界采用样条曲线代替,通过调整样条曲线控制点的坐标改变边界的形状,进而调整边界上的应力分布。边界上的平均应力被选作参考应力,每一个迭代步中,边界上应力比参考应力大的控制点,其位置往外移动以增加材料;同时,比参考应力小的控制点,其位置减少材料。优化实例定义了两个可行域和三个初始形状,以比较可行域以及初始形状对优化结果的影响。同时还研究了控制数的大小对优化过程和结果的影响。 A gradient-less parametrical approach has been employed to optimize the stress concentration on local part. The design boundary was represented by splines and the shape of boundary can be varied by adjusting the coordinate of control points.By doing so to varying the stress distribution on design boundary. The average stress on design boundary was selected as the reference stress. Control points with higher stress than average stress move outward to add material; meanwhile,control points with lower stress move inward to reduce material to fulfill the shape optimization. Two feasible zones and three start shapes have been employed in optimization instances to compare the influence of the different feasible zones and start shapes,respectively.The influence of the control parameters to the optimization process and result have also been studied.
出处 《机械强度》 CAS CSCD 北大核心 2016年第2期265-270,共6页 Journal of Mechanical Strength
基金 国家自然科学基金(50975207 51075304 51205292) 中央高校基本科研业务费专项资金(20113145 20112548)资助~~
关键词 形状优化 应力集中 无梯度 有限元法 Shape optimization Stress concentration Gradient-less Finite element method
  • 相关文献

参考文献2

二级参考文献19

  • 1吴志学.机械零件形状优化设计的仿生学方法[J].中国机械工程,2005,16(10):869-873. 被引量:9
  • 2Baud R V. Fillet profiles for constant stress[J].Product Engineering,1934,(04):133-134.
  • 3Mattheck C,Burkardt S. A new method of structural shape optimization based on biological growth[J].International Journal of Fatigue,1990,(03):185-190.
  • 4Neuber H. Kerbspannungslehre:Grundlagen für genaue festigkeitsberechnung mit berücksichtigung von konstruktionsform und werksto[M].Berlin:Springer-Verlag,1957.
  • 5Schnack E. An optimization procedure for stress concentrations by the finite element technique[J].International Journal for Numerical Methods inEngineering,1979,(01):115-124.
  • 6Braibant V,Fleury C. Shape optimal design using B-splines[J].Computer Methods in Applied Mechanics and Engineering,1984,(03):247-267.
  • 7Fancello E A,Feijóo R A. Contact shape optimization[J].Computational Mechanics,1994.203-212.
  • 8Rodrigues H C. A mixed variational formulation for shape optimization of solids with contact conditions[J].Structural Optimization,1993,(01):19-28.
  • 9Hilding D,Trostenfelt B,Klarbring A. A computational methodology for shape optimization of structures in frictionless contact[J].Computer Methods in Applied Mechanics and Engineering,2001,(31):4043-4060.
  • 10Tafreshi A. Shape sensitivity analysis of composites in contact using the boundary element method[J].Engineering Analysis With Boundary Elements,2009,(02):215-224.

共引文献3

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部