期刊文献+

新型ARIMA-BP组合模型在医药企业销售管理中的应用 被引量:1

Application of ARIMA-BP model in the sales management of the listed pharmaceutical companies
下载PDF
导出
摘要 随着医药企业间的市场竞争加剧,企业销售管理的重要性逐渐凸显。医药销售预测是个复杂的非线性系统,为提高企业销售预测的准确性,本文选取医药上市企业处方药七叶皂苷钠历史销售数据,分别建立ARIMA线性模型和BP神经网络非线性模型并加以验证。证明了在销售预测上采用ARIMA-BP组合模型可以有效降低误差,为医药企业的销售管理和企业决策带来新的思路。 The importance of sales management in pharmaceutical enterprises has become increasingly prominent with the intensification of market competition among them. Since the forecast of pharmaceutical sales is a complex nonlinear system, the data of historical sales for sodium aescinate, a prescription drug from the listed pharmaceutical companies were selected, and an ARIMA linear model and a BP network nonlinear model were established and verified based on the theory of linear and nonlinear prediction in order to improve the accuracy of sales forecast. It is proved that adoption of a combination of two models can effectively reduce errors and bring in some new ideas for the sales management and policy decision of pharmaceutical enterprises.
作者 吴磊 徐怀伏
出处 《上海医药》 CAS 2016年第7期68-72,共5页 Shanghai Medical & Pharmaceutical Journal
关键词 销售管理 ARIMA模型 BP神经网络 sales management ARIMA model BP neural network
  • 相关文献

参考文献6

二级参考文献35

  • 1华琇,陈继红.基于RBF神经网络的销售预测模型的研究与应用[J].南通工学院学报(自然科学版),2004,3(4):84-86. 被引量:9
  • 2夏兴萍.改善投资与消费关系的宏观思考[J].宏观经济管理,2005(11):35-37. 被引量:5
  • 3曹建云,陆国平,杨奕.径向基函数网络泛化能力研究及其应用[J].系统工程与电子技术,2006,28(1):72-74. 被引量:7
  • 4李月英,申东日,陈义俊,李素杰.基于RBF神经网络的非线性系统的预测[J].计算机测量与控制,2006,14(3):319-321. 被引量:13
  • 5[3]Conner J T,Martin R D and Atlas L E.Recurrent Neural Networks and Robust Time Series Prediction[J].IEEE Transactions on Neural Networks,1994,5(2):240-254.
  • 6[4]Pandit S M,Wu Shenming.时间序列及系统分析与应用[M].北京:机械工业出版社,1988.
  • 7[5]Saad E W,Prokhorov D V and Wunsch D C. Comparative Study of Stock Trend Prediction Using Time Delay, Recurrent and Probabilistic Neural Networks[J]. IEEE Transactions on Neural Networks,1998,9(6):1456-1470.
  • 8[8]Bates J M and Granger C W. Combination of Forecasts[J]. Operational Res. Quart., 1969,20(4):451-468.
  • 9[11]Khotanzad A, Elragal H and Lu Tsun_Liang. Combination of Artificial Neural-Network Forecasters for Prediction of Natural Gas Consumption[J]. IEEE Transactions on Neural Networks,2000,11(2):464-473.
  • 10[12]温州市统计局.温州统计年鉴(2000)[M].北京:中国统计出版社,2000.

共引文献135

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部