期刊文献+

柔性光学超材料和等离子激元的发展和应用 被引量:1

Materials and applications of flexible metamaterials and plasmonics
原文传递
导出
摘要 赋予光学超材料和等离子激元器件弯折、拉伸和卷曲的特性可以开启对电磁波进行调控的新篇章,并实现新颖的器件设计和强大的功能性,例如隐身装置、超级棱镜和变换光学等.本文综述了近年来从微波到可见光不同波段产生响应的柔性光学超材料和等离子激元器件的发展和应用,包括光学结构设计、柔性基底的力学和光学性质、及与其匹配的微纳加工技术.除传统的光刻、电子束曝光、纳米粒子自组装技术外,本文还介绍了新型的纳米掩膜板和纳米压印转移技术.其中,新型低成本的适用于大面积纳米光学结构的纳米压印转移技术具有较大应用前景.文章还将讨论应力作用对不同光子器件产生的性质调控以及实现的滤波器,拉曼信号增强和传感器等方面的应用. Given the ability to bend, stretch and roll like stretchable electronics, the newly developed metamaterial and plasmonic devices would open new chapters in functional optics. They can manipulate the electromagnetic waves in unprecedented forms and realize powerful applications like invisibility cloaking, sub-wavelength imaging, transformation optics and functional sensors etc. This review focused on the recent development in soft, flexible metamaterials and plasmonics that resonate from microwave to visible frequencies, various applications have been realized in filters, sensors and surface enhanced Raman spectroscopy etc. Optical structure designs are ranged from split ring resonators, multilayer fishnet metamaterials and nanoparticle arrays. Common soft substrates include polyimide, polydimethysiloxane, polyethylene terephthalate and polyethylene naphthalene. Their mechanical and optical properties were discussed. Compatible fabrication techniques such as conventional photolithography, electron beam lithography and a few newly developed nanofabrication techniques were introduced. Among which, nanoimprint and nanotransfer techniques that result in large area, low cost, high quality soft metamaterials and plasmonics are promising in wearable and tunable applications.
出处 《中国科学:物理学、力学、天文学》 CSCD 北大核心 2016年第4期25-36,共12页 Scientia Sinica Physica,Mechanica & Astronomica
基金 国家重点基础研究发展计划(编号:2015CB351903) 江苏省自然科学基金(编号:BK20150790)资助项目
关键词 超材料 等离子激元 柔性光子器件 可调光子器件 metamaterials plasmonics flexible photonics tunable resonance
  • 相关文献

参考文献85

  • 1Kim D H, Lu N, Ghaffari R, et al. Inorganic semiconductor nanomaterials for flexible and stretchable bio-integrated electronics. NPG Asia Mater, 2012, 4(4):e15.
  • 2Kim D H, Lu N, Huang Y, et al. Materials for stretchable electronics in bioinspired and biointegrated devices. MRS Bull, 2012, 37:226-235.
  • 3Rogers J A, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science, 2010, 327(5973):1603-1607.
  • 4Kim D H, Lu N, Ma R, et al. Epidermal electronics. Science, 2011, 333(6044):838-843.
  • 5Webb R C, Bonifas A P, Behnaz A, et al. Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat Mater, 2013, 12(10):938-944.
  • 6Kim D H, Viventi J, Amsden J J, et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat Mater, 2010, 9(6):511-517.
  • 7Kim D H, Ghaffari R, Lu N, et al. Electronic sensor and actuator webs for large-area complex geometry cardiac mapping and therapy. Proc Natl Acad Sci USA, 2012, 109(49):19910-19915.
  • 8Jung I, Xiao J, Malyarchuk V, et al. Dynamically tunable hemispherical electronic eye camera system with adjustable zoom capability. Proc Natl Acad Sci USA, 2011, 108(5):1788-1793.
  • 9Ko H C, Stoykovich M P, Song J, et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature, 2008, 454(7205):748-753.
  • 10Song Y M, Xie Y, Malyarchuk V, et al. Digital cameras with designs inspired by the arthropod eye. Nature, 2013, 497(7447):95-99.

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部