期刊文献+

基于颜色属性直方图的尺度目标跟踪算法研究 被引量:22

Scale-adaptive Object Tracking Based on Color Names Histogram
下载PDF
导出
摘要 利用目标颜色信息的跟踪算法,容易受到环境光照、尺度变化、相似背景等因素的干扰,导致跟踪任务失败。为了克服以上问题,该文提出一种基于颜色属性空间的鲁棒尺度目标跟踪算法。该算法首先将原始的RGB颜色空间映射到颜色属性(Color Names,CN)空间,减少目标颜色在跟踪过程中受环境变化影响。然后采用一种背景加权约束的颜色属性直方图,来抑制相似背景的干扰。最后,为了解决目标尺度变化带来的影响,先用梯度上升法粗略估计尺度,再用约束项精确求解尺度,并利用反向一致性检验,进一步提高尺度估计的准确性。该文选取了5段典型视频进行实验,并与相关算法进行比较。结果表明所提算法能够消除环境光照、阴影、相似背景和尺度变化等因素所带来的影响,在中心位置误差和跟踪成功率性能指标上,优于其它算法。 Tracking effects of algorithms using color information are easily interfered by background clustering, illumination and scale changes, which can result in tracking failure. To solve these problems, an efficient model is proposed to project original RGB color space to a more robust color space-Color Names(CN) feature space. Furthermore, objects are represented by background weighted color names histogram, and thus the similar background patches around the target are suppressed. Moreover, a two-step tuning way is adapted to estimate the scale by coarse tuning with gradient ascent and fine tuning with constrained items. Back-forward scale check is also used to ensure the precision of scale estimation. 5 representative videos are chosen to examine the proposed algorithms with four others. The results show that the proposed approach is robust to illumination variation, shadows, background clustering, and scale changes. The central distance error and tracking accuracy of the proposed approach also outperform the contrast algorithms.
出处 《电子与信息学报》 EI CSCD 北大核心 2016年第5期1099-1106,共8页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61472442 61372167) 陕西省青年科技新星项目(2015KJXX-46)~~
关键词 目标跟踪 颜色属性 背景加权抑制 尺度自适应 Object tracking Color Names(CN) Background weighted suppression Scale-adaptive
  • 相关文献

参考文献15

  • 1POSSEGGER H, MAUTHNER T, and BISCHOF H. In defense of color-based model-free tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 2113-2120.
  • 2ORON S, BAR-HILLEL A, LEVI D, et al. Locally orderless tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition, Rhode Island, USA, 2012: 1940-1947.
  • 3胡良梅,段琳琳,张旭东,杨静.融合颜色信息与深度信息的运动目标检测方法[J].电子与信息学报,2014,36(9):2047-2052. 被引量:7
  • 4MEER P, RAMESH V, and COMANICIU D. Kernel-based object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-575.
  • 5张红颖,胡正.融合局部三值数量和色度信息的均值漂移跟踪[J].电子与信息学报,2014,36(3):624-630. 被引量:11
  • 6Van de WEIJER J, SCHMID C, and VERBEEK J. Learning color names from real-world Images[C]. IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, Minnesota, USA, 2007: 1-8.
  • 7Van de WEIJER J, SCHMID C, VERBEEK J, et al. Learning color names for real-world applications[J]. IEEE Transactions on Image Processing, 2009, 18(7): 1512-1523.
  • 8KHAN F S, Van de WEIJER J, and VANRELL M. Modulating shape features by color attention for object recognition[J]. International Journal of Computer Vision, 2012, 98(1): 49-64.
  • 9KHAN F S, ANWER R M, Van de WEIJER J, et al. Color attributes for object detection[C]. IEEE Conference on Computer Vision and Pattern Recognition, Rhode Island, USA, 2012: 3306-3313.
  • 10DANELLJAN M, KHAN F S, FELSBERG M, et al. Adaptive color attributes for real-time visual tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 1090-1097.

二级参考文献24

  • 1Stauffer C and Grimson W E L. Adaptive background mixture models for real-time tracking[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Fort Collins, CO, 1999: 246-252.
  • 2Cucchiara R, Grana C, Piccardi M, et al. hnproving shadow suppression in moving object detection with HSV color information[C]. Proceedings of the IEEE Intelligent Transportation Systems, Oakland, CA, 2001: 334-339.
  • 3Feng W, Liu R, Jia B, et al.. An efficient pixel-wise method for moving object detection in complex scenes[C]. IEEE International Conference on Advanced Video and Signal Based Surveillance. Krakow, Poland. 2013: 389-394.
  • 4Zhang D and Lu G. The Principle of 3D Camera Imaging[M]. New York: 3D Biometrics, Springer, 2013: 233-256.
  • 5Foix S, Alenya G, and Torras C. Lock-in Time-of-Flight (ToF) cameras: a survey[J]. IEEE Sensors Journal, 2011, 11(9): 1917-1926.
  • 6Lee C H, Su Y C, and Chen L G. An intelligent depth-based obstacle detection for mobile applications]C]. IEEE International Conference on Consumer Electronics, Berlin, 2012: 223-225.
  • 7Li Y, Wang G, Lin X, et al.. Real-time depth-based segmentation and tracking of multiple objects[C]. Proceedings of IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems, Bangkok, Thailand, 2012: 429-433.
  • 8Hu Liang-mei, Zhang Ya-qiong, Zhang Xu-dong, et al.. The 3D reconstruction of PMD camera and high resolusion color camera[C]. Proceedings of 3rd International Conference on Signal Processing Systems, Yantai, China, 2011, (2): 470-472.
  • 9Leens J, Pierard S, Barnich O, et al.. Combining color, depth, and motion for video segmentation[J]. LNCS, 2009, 5815: 104-113.
  • 10Mirante E, Georgiev M, and Gotchev A. A fast image segmentation algorithm using color and depth map[C]. IEEE 3DTV-Conference on The True Vision-Capture, Transmission and Display of 3D Video, Antalya, Turkey, 2011.1-4.

共引文献15

同被引文献91

引证文献22

二级引证文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部