期刊文献+

基于相似性迁移学习的图像标注 被引量:2

AN IMAGE ANNOTATION METHOD BASED ON SIMILARITY TRANSFER LEARNING
下载PDF
导出
摘要 提出一种基于相似性迁移学习的图像标注算法.首先建立图像间的特征相似度量,引入相似性迁移学习算法,将图像的底层特征相似度量迁移到图像所对应标注词的相似度量,通过统计方法实现图像的自动标注.实验表明,本文方法能够有效提高图像的标注质量,减少噪声干扰. In this paper, we propose an image annotation scheme based on similarity transfer learning. First of all, we establish similarity measures between the features of images. Then we introduce the thought of similarity transfer learning which could transfer the similarity of the image characteristics to the similarity of the image annotation. After that, our work is to realize the image annotation by using the statistical methods. The effectioeness of our image annotation method is proved by the experimental results. This kind of method could improve the quality of image annotation, and reduce the influence of the noise of images.
出处 《山东师范大学学报(自然科学版)》 CAS 2016年第2期22-26,共5页 Journal of Shandong Normal University(Natural Science)
基金 国家自然科学基金资助项目(61170145 61373081) 教育部博士点基金资助项目(20113704110001)
关键词 相似度量 迁移学习 统计 图像标注 similarity measurements similarity transfer learning statistics image annotation
  • 相关文献

参考文献8

  • 1McCllum Andrew. Multi -label text classification with a mixture model trained by EM [ C ]. AAAI' 99 Workshop on Text Learning, 1999:1 -7.
  • 2郑希源,张化祥.基于局部近邻相关性的多标记算法[J].计算机科学,2014,41(2):123-126. 被引量:4
  • 3杨阳,张文生.基于深度学习的图像自动标注算法[J].数据采集与处理,2015,30(1):88-98. 被引量:26
  • 4Wang M,Ni B, Hua X S, et al. Assistive tagging:A survey of multimedia tagging with human -computer joint exploration [ Jl. ACM Computing Surveys, 2012,44(4) :25.
  • 5Kim H J, Choi Y H. A novel echo hiding scheme with backward and forward kernels[ J]. IEEE Trans Circuits Syst, Video Teehno1,2003 ,13 :885 -889.
  • 6Le Cun Y, Bottou L, Bengio Y, et al. Gradient -based learning applied to document recognition [ J]. Proceedings of the IEEE, 1998,86 (11 ) : 2278 - 2324.
  • 7Socher R, Lin C C, Manning C,et ah Parsing natural scenes and natural language with recursive neural network [ C ]. Proceedings of the 28th International Conference on Machine Learning. Washington, USA : ICML,2011 : 129 - 136.
  • 8Wang W, Ooi B C, Zhang D. Effective multi - modal retrieval based on stacked auto - encoders [ C ]. Proceedings of International Conference on Very Large Data Bases. Hangzhou, China: VLDB, 2014:649 - 660.

二级参考文献40

  • 1McCallum Andrew. Multi-label text classification with a mixture model trained by EM[A].1999.1-7.
  • 2Schapire,Robert E,Singer Y. BoosTexter:A boosting-based system for text categorization[J].{H}Machine Learning,2000,(2/3):135-168.
  • 3Tsoumakas,Grigorios,Katakis I. Multi-label classification:An overview[J].International Journal of Data Warehousing and Mining (IJDWM),2007,(3):1-13.
  • 4Elisseeff,André,Weston J. A kernel method for multi-labelled classification[J].Advances in neural information processing systems,2001.681-687.
  • 5Zhang Min-ling,Zhou Zhi-hua. ML-KNN:A lazy learning approach to multi-label learning[J].{H}Pattern Recognition,2007,(7):2038-2048.
  • 6苗夺谦;卫志华.中文文本信息处理的原理与应用[M]{H}北京:清华大学出版社,2007219-228.
  • 7Clare,Amanda,Ding K R. Knowledge discovery in multi-label phenotype data[A].2001.42-53.
  • 8Comité D,Francesco,Gilleron R. Learning multi-label alternating decision trees from texts and data[A].2003.35-49.
  • 9Boutell,Matthew,Luo Jie-bo. Learning multi-label scene classification[J].{H}Pattern Recognition,2004,(9):1757-1771.
  • 10Zhang Min-ling,Zhou Zhi-hua. Multilabel neural networks with applications to functional genomics and text categorization[J].{H}IEEE Transactions on Knowledge and Data Engineering,2006,(10):1338-1351.

共引文献28

同被引文献6

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部