摘要
提出一种基于相似性迁移学习的图像标注算法.首先建立图像间的特征相似度量,引入相似性迁移学习算法,将图像的底层特征相似度量迁移到图像所对应标注词的相似度量,通过统计方法实现图像的自动标注.实验表明,本文方法能够有效提高图像的标注质量,减少噪声干扰.
In this paper, we propose an image annotation scheme based on similarity transfer learning. First of all, we establish similarity measures between the features of images. Then we introduce the thought of similarity transfer learning which could transfer the similarity of the image characteristics to the similarity of the image annotation. After that, our work is to realize the image annotation by using the statistical methods. The effectioeness of our image annotation method is proved by the experimental results. This kind of method could improve the quality of image annotation, and reduce the influence of the noise of images.
出处
《山东师范大学学报(自然科学版)》
CAS
2016年第2期22-26,共5页
Journal of Shandong Normal University(Natural Science)
基金
国家自然科学基金资助项目(61170145
61373081)
教育部博士点基金资助项目(20113704110001)
关键词
相似度量
迁移学习
统计
图像标注
similarity measurements
similarity transfer learning
statistics
image annotation