期刊文献+

基于图像识别的微细粒子静电捕集效率评价方法 被引量:11

Evaluation Method of Fine Particle Electrostatic Collection Efficiency Based on Image Identification
下载PDF
导出
摘要 通过采集并分析电除尘器内部流场和粒子分布动态和静态图像的方法,对微细粒子捕集效率进行评价。实验电除尘器箱体采用有机玻璃材质,放电极为芒刺型,测试粒子源为人工烟气,烟气入口流速为0.4 m/s。实验中对放电极分别施加直流和脉冲高电压,采集相应流场变化的图像和电除尘器入风口与出风口粒子分布的图像进行处理和分析。实验结果表明:提出的动静态图像处理方法能够实时、有效地实现微细粒子观测和荷电状态评价。直流供电下,流场在电压升至–8 kV开始呈现漩涡变化;而施加脉冲高压时,峰值电压达到–30 kV时产生漩涡。电压在–22 kV以下时,直流供电粒子捕集效率较高;电压超过–22 kV后,脉冲供电粒子捕集效率高于直流,最终捕集效率可达91.23%。 Fine particle collection efficiency is evaluated by obtaining and analyzing dynamic flow field inside electrostatic precipitator(ESP) and dynamic/static images of particles distribution. The side-wall of electrostatic precipitator consists of acrylic material, and the discharge electrodes are spike-type. The man-made smoke is considered to be the particle source for testing, and the flow velocity of the inlet is 0.4 m/s. In the experiment, the discharge electrode is energized with DC and short pulsed high voltage, respectively. Then, the images which contain the flow field changing and smoke particles distribution of inlet and outlet of ESP are processed and analyzed. The experimental results indicate that the method of processing dynamic and static images can be used to observe fine particles and evaluate particles charging status timely and effectively. Energized with negative DC high voltage, the vortexes of the flow field begin to appear when the voltage value rises to –8 kV. While energized with negative short impulses high voltage, the vortexes appear when the peak voltage value rises to –30 kV. The particles collection efficiency with DC energization is higher when the voltage value is lower than –22 kV. While the voltage value exceeds –22 kV, the particles collection efficiency energized by impulses high voltage is higher than that by DC energization, and the final collection efficiency can be up to 91.23%.
出处 《高电压技术》 EI CAS CSCD 北大核心 2016年第5期1455-1462,共8页 High Voltage Engineering
基金 国家国际科技合作专项(2014DFR50880)~~
关键词 电除尘器 图像识别 粒子荷电 捕集效率 供电形式 electrostatic precipitator image identification particle charging collection efficiency energization form
  • 引文网络
  • 相关文献

参考文献28

  • 1Mizuno A. Electrostatic precipitation[J]. IEEE Transactions on Di- electrics and Electrical Insulation, 2000, 7(5): 615-624.
  • 2White H J. Particle charging in electrostatic precipitation[J]. AIEE Transactions, 1951, 70(2): 1186-1191.
  • 3Parker K. Electrical operation of electrostatic precipitatiors[M]. Lon- don, UK: The Institution of Engineering and Technology, 2003: 21-26.
  • 4Mermigkas A C, Timoshkin I V. Removal of fine and ultrafine par- ticles from air by microelectrostatic precipitation[J]. IEEE Transactions on Plasma Science, 2013, 41(10): 2842-2850.
  • 5Masuda S, Hosokawa S, Tachibana N, et al. Fundamental behavior of dire-coupled submicrosecond pulse energization in electrostatic preci- pitators[J]. IEEE Transactions on Industry Application, 1987, 23 (1): 120-126.
  • 6Zukeran A, Looy P C, Berezin A A, et al. Collection efficiency of ultrafine particles by an electrostatic precipitator under DC and pulse operating modes[J]. IEEE Transactions on Industry Application, 1999, 35(5): 1184-1191.
  • 7Mermigkas A C, Timoshkin I V, Given M J, et al. Superposition of DC voltage and submicrosecond impulses for energization of electrostatic precipitators[J]. IEEE Transactions on Plasma Science, 2012, 40(10): 2388-2394.
  • 8沈欣军,曾宇翾,郑钦臻,闫克平.基于粒子成像测速法的正、负电晕放电下线-板式电除尘器内流场测试[J].高电压技术,2014,40(9):2757-2763. 被引量:24
  • 9李庆,王利,杨青,剧晓晨,殷宇朝.板-袋收尘极板对微细粉尘收集效果的影响分析[J].高电压技术,2016,42(2):361-367. 被引量:13
  • 10Noureddine Z, Dramane B, Moreau E, et al. EHD flow and collection efficiency of a DBD ESP in wire-to-plane and plane-to-plane configurations[J]. IEEE Transactions on Industry Application, 2011, 47(1): 336-343.

二级参考文献131

共引文献81

同被引文献95

引证文献11

二级引证文献185

;
使用帮助 返回顶部