期刊文献+

Dwarfi ng apple rootstock responses to elevated temperatures: A study on plant physiological features and transcription level of related genes 被引量:2

Dwarfi ng apple rootstock responses to elevated temperatures: A study on plant physiological features and transcription level of related genes
下载PDF
导出
摘要 The aim of this study was to investigate the impact of heat stress on physiological features, together with endogenous hormones and the transcription level of related genes, to estimate the heat resistance ability and stress injury mechanism of different dwarfing apple rootstocks. Among the six rootstocks, the rootstocks of native Shao series(SH series) showed better heat stress resistance than those of Budagovski 9(B9), Cornell-Geneva 24(CG24), and Malling 26(M26) from abroad. Among SH series rootstocks, SH1 and SH6 showed higher heat stress resistance than SH40. M26 demonstrated the lowest adaption ability to heat stress, showing higher leaf conductivity and lower liquid water content(LWC) with the increase in temperature. Heat stress also resulted in the suppression of photosynthesis, which showed no significant restoration after 7-day recovery. It should be noted that although a higher temperature led to a lower LWC and photosynthetic efficiency(P_n) of CG24, there was no significant increase in leaf conductivity, and 7 days after the treatment, the P_n of CG24 recovered. The extremely high temperature tolerance of SH series rootstocks could be related to the greater osmotic adjustment(OA), which was reflected by smaller reductions in leaf relative water content(RWC) and higher turgor potentials and leaf gas exchange compared with the other rootstocks. Determination of hormones indicated multivariate regulation, and it is presumed that a relatively stable expression levels of functional genes under high-temperature stress is necessary for heat stress resistance of rootstocks. The aim of this study was to investigate the impact of heat stress on physiological features, together with endogenous hormones and the transcription level of related genes, to estimate the heat resistance ability and stress injury mechanism of different dwarfing apple rootstocks. Among the six rootstocks, the rootstocks of native Shao series(SH series) showed better heat stress resistance than those of Budagovski 9(B9), Cornell-Geneva 24(CG24), and Malling 26(M26) from abroad. Among SH series rootstocks, SH1 and SH6 showed higher heat stress resistance than SH40. M26 demonstrated the lowest adaption ability to heat stress, showing higher leaf conductivity and lower liquid water content(LWC) with the increase in temperature. Heat stress also resulted in the suppression of photosynthesis, which showed no significant restoration after 7-day recovery. It should be noted that although a higher temperature led to a lower LWC and photosynthetic efficiency(P_n) of CG24, there was no significant increase in leaf conductivity, and 7 days after the treatment, the P_n of CG24 recovered. The extremely high temperature tolerance of SH series rootstocks could be related to the greater osmotic adjustment(OA), which was reflected by smaller reductions in leaf relative water content(RWC) and higher turgor potentials and leaf gas exchange compared with the other rootstocks. Determination of hormones indicated multivariate regulation, and it is presumed that a relatively stable expression levels of functional genes under high-temperature stress is necessary for heat stress resistance of rootstocks.
出处 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第5期1025-1033,共9页 农业科学学报(英文版)
基金 support of the Special Fund for the China Agriculture Research System (CARS-28) the Special Fund for the Construction of Scientific and Technological Innovation Capability, China (KJXC20140406)
关键词 dwarfing apple rootstock SH series rootstocks heat stress physiological features dwarfing apple rootstock, SH series rootstocks, heat stress, physiological features
  • 相关文献

参考文献4

二级参考文献57

共引文献57

同被引文献7

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部