期刊文献+

直激式压电风能捕获器的性能分析与实验 被引量:6

Performance analysis and test of blowing-type PZT wind energy harvester
下载PDF
导出
摘要 提出一种由压电梁及其端部附加质量构成的直激式压电风能捕获器。在考虑了压电振子静平衡变形的基础上,根据涡激振动理论建立了柔性压电振子的自激振动理论模型并进行了仿真分析,获得了压电梁厚度比、附加质量及风速对其发电性能的影响规律。结果表明,存在最佳的压电梁厚度比使输出电压、电能及功率最大,电压/电能/功率所对应的最佳厚度比分别为0.5/0.65/0.65。其它参数确定时,存在最佳风速/附加质量使输出电压最大,且最佳风速随附加质量增加而降低、最佳质量随风速增加而降低。制作了风能捕获器样机并进行了试验测试,风速为4.8/7.2/10m/s时,对应的最佳附加质量及最大电压分别为15/11/7g和1.9/3.94/6.18V;风速为10m/s时,10g附加质量下的输出电压为0/20g附加质量下的4.1/1.2倍。结果证明根据实际风速范围确定合理的附加质量可提高发电能力。 A blowing-type PZT wind energy harvester consisting of a piezo-cantilever and a proof mass on its free-end was presented.By considering the static balance deformation of the piezoelectric vibrator,an analysis model of a flexible piezoelectric vibrator was established and simulated on the basis of the theory of vortex-induced vibration.Then,the influences of thickness ratios,wind speeds and proof masses on the electrical energy generation were obtained.The results show that there are individual optimal thickness ratios for the generated voltage,energy and the output power to achieve peaks,and the optimal thickness ratios for the generated voltage/energy/power are 0.5/0.65/0.65,respectively.Under other parameters given,there are optimal wind speeds and optimal proof masses for the voltage to achieve their peaks,and the optimal wind speed(proof mass)decreases with the increasing of proof mass(wind speed).A PZT wind energy harvester was fabricated and tested under different proof masses and wind speeds.The experiment results show that the achieved optimal proof masses and optimal voltages under wind speeds of 4.8/7.2/10 m/s are 15/11/7g and 1.9/3.94/6.18 Vrespectively.In the case of wind speed of 10 m/s,the generated voltages under 10 g proofmass is 4.1/1.2times those under 0/20 g proof mass respectively.It concludes that a reasonable proof mass is helpful for a PZT wind energy harvester to generate more energies.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2016年第5期1087-1092,共6页 Optics and Precision Engineering
基金 国家自然科学基金资助项目(No.61574128 No.51277166 No.51377147 No.51577173) 国家级大学生创新创业项目(No.201510345033)
关键词 压电风能捕获器 直激式风能捕获器 风速 发电性能 piezoelectric wind energy harvester blowing-type wind energy harvester wind speed electrical energy generation
  • 相关文献

参考文献13

  • 1BEEBY S P, ZHU D. Vibration energy harvesting: fabrication, miniaturisation and applications [- J]. Proe. of SPIE, 20]5, 9517..951703.
  • 2MATIKO J W, GRABHAM N J, BEEBY S P, et al.. Review of the application of energy harvesting in buildings [J]. Meas. Sei. Technol., 2014, 25: 012002-1 25.
  • 3ELVIN N, ERTURK A. Advances in Energy Har- vesting Methods [M]. New York: Springer-Verlag New York Inc. , 2013.
  • 4阚君武,李洋,王淑云,汪彬,沈亚林,李胜杰.旋转激励磁铁数对压电俘能器输出性能的影响[J].光学精密工程,2014,22(7):1864-1870. 被引量:4
  • 5DELNAVAZ A,VOIX J. Flexible piezoelectric en- ergy harvesting from jaw movements [J]. Smart Materials and Structures, 2014, 23 .. 105020 (Spp).
  • 6DAQAQ M F, MASANA R, ERTURK A, et al.. On the role of nonlinearities in vibratory energy har- vesting:a critical review and discussion [J]. ASME Appl. Mech. Rev. , 2014, 66(4)..040801.
  • 7TRUITT A, MAHMOODI S N. A review on active wind energy harvesting designs [J]. International Journal of Precision Engineering and Manufac-turing,2013, 14(9):1667-1675.
  • 8LUONG H T, GO0 N S. Use of a magnetic force exciter to vibrate a piezocomposite generating ele- ment in a small scale windmill [J]. Smart Materials and Structures, 2012,21 (2) : 025017.
  • 9SKOW E, KOONTZ Z, CUNEFARE K, et al.. Hydraulic pressure energy harvester enhanced by Helmholtz resonator[C]. Proc. of SPIE, 2015, 9431:943104.
  • 10SIVADAS V, WICKENHEISER A M. A study of several vortex-induced vibration techniques for pie- zoelectric wind energy harvesting [ C]. Proe. of SPIE, 2011, 7977:79770F.

二级参考文献13

  • 1KAN Jun-wu,XUAN Ming,LIU Guo-jun,YANG Zhi-gang,WU Yi-hui.Performance of a serial-connection multi-chamber piezoelectric micropump[J].光学精密工程,2005,13(5):535-541. 被引量:3
  • 2曾平,温建明,程光明,吴博达,杨志刚.新型惯性式压电驱动机构的研究[J].光学精密工程,2006,14(4):623-627. 被引量:23
  • 3ADNAN HARB. Energy harvesting: State-of-the- art [J]. Renewable Energy ,2011 ,36 : 2641-2654.
  • 4PAULO J,GASPAR P D. Review and future trend of energy harvesting methods for portable medical devices [C]. Proc. of the World Congress on Engineering, 2010(2) : 909-914.
  • 5KIM H S, KIM J H, KIM J. A Review of piezoelectric energy harvesting based on vibration [J]. International Journal of Precision Engineering and Manufacturing, 2011, 12 ( 6 ) : 1129-1141.
  • 6THAD S. Human powered wearable computing [J]. IBM Systems Journal, 1996, 35 (3-4):618-629.
  • 7SALEM S, OTHMAN S. A review of vibration- based MEMS piezoelectric energy harvesters[J].Energy Conversion and Management, 2011, 52: 500-504.
  • 8POBERING S, EBERMEYER S, SCHWESINGER N. Generation of electrical energy using short piezoelectric cantilevers in flowing media [J]. Proc. of SPIE, 2009,7288 : 71-78.
  • 9GUA L, LIVERMORE C. Passive self-tuning energy harvester for extracting energy from rotational motion [J]. Applied Physics Letters ,2010,97(8) :081904.
  • 10PRIYA S,CHEN C T,FYE D,et al.. Piezoelectric windmill: a novel solution to remote sensing [J]. Japanese Journal of Applied Physics. 2005, 44 (3) : L104-L107.

共引文献92

同被引文献35

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部