期刊文献+

基于梯度显著性的水面无人艇的海天线检测方法 被引量:28

Sea Sky Line Detection Method of Unmanned Surface Vehicle Based on Gradient Saliency
原文传递
导出
摘要 水面无人艇技术在气象监测、海面搜救、对敌侦察、精确打击等方向发挥着越来越重要的作用,但实际海面环境中的云层辐射、波浪反射、气象条件等光学图像形成中的各种干扰因素,使海天线的准确检测难以实现。为了解决这一问题,提出一种基于梯度显著性的海天线检测方法,梯度显著性的计算有效增强了海天线的直线特征并抑制了各种干扰因素,采用区域生长方法实现了对海天线的检测和辨识,最后使用XL水面无人艇在实际海面环境下采集的光学图像进行验证,结果证明了所用方法的准确性和实时性。 Unmanned surface vehicle(USV)plays a more and more important role in various areas such as meteorological monitoring,maritime search and rescue,enemy reconnaissance,and precision strike.However,special features in real marine environment such as cloud clutter,sea glint,and weather conditions result in various kinds of interference in optical images,which makes it very difficult to detect the sea sky line accurately.To solve this problem,a sea sky line detection method is proposed based on gradient saliency.The line features of sea sky line are enhanced effectively through the computation of gradient saliency;other interference factors are suppressed;sea sky line detection and identification are achieved by region growing method.In the end,the proposed method is tested on optical images fromXL"USV in real marine environment and the experimental results demonstrate that the proposed method is significantly superior to other state-of-the-art methods in terms of detection rate and real-time performance.
出处 《光学学报》 EI CAS CSCD 北大核心 2016年第5期58-67,共10页 Acta Optica Sinica
基金 国家863计划(2014AA09A509) 国家自然科学基金(51009040) 中央高校基本科研业务费自由探索计划(HEUCF150118)
关键词 成像系统 图像处理 海天线检测 梯度显著性 区域生长 直线特征 imaging systems image processing sea sky line detection gradient saliency region growing line feature
  • 相关文献

参考文献3

二级参考文献45

  • 1杨波,徐光祐.纹理相似性度量研究及基于纹理特征的图象检索[J].自动化学报,2004,30(6):991-998. 被引量:6
  • 2张冰,赵凝霞,刘维亭,朱志宇.基于小波变换的水天线提取算法研究[J].激光与红外,2005,35(4):297-299. 被引量:11
  • 3刘松涛,周晓东,王成刚.复杂海空背景下鲁棒的海天线检测算法研究[J].光电工程,2006,33(8):5-10. 被引量:55
  • 4Qi Baojun, Wu Tao, He Hangen et al.. Real-lime detection of small surface objects using weather effects[C]. CVPR, 2010, 1129-1140.
  • 5Cosmin Grigorescu, Nicolai Petkov, Michel A. Westenberg Contour and boundary detection improved by surround suppression of texture edges[J]. Image and Vision Computing, 2004, 22(8): 609-622.
  • 6Guo Siyu, Pridmore Tony, Kong Yaguang et al.. An improved Hough transform voting scheme utilizing surround suppression [J]. Pattern Recognition Letters, 2009, 30(13):1241--1252.
  • 7Ray Hidayat. Texture-Boundary Detection in Real Time [D]. Christchurch: University of Canterbury, 2010. 75-76.
  • 8H Masuzawa, J Miura. Observation planning for efficient environment information summarization [ C ]. IEEE RSJ International ('onference on Intelligent Robots and Systems, 2009. 5794 5800.
  • 9S Ekvall, D Kragic. Receptive field cooccurrence histograms for object detection [ C]. IEEE RSJ International Conference on Intelligent Robots and Systems. 2005. 84-89.
  • 10C Choi. H I Christensen. Cognitive vision for efficient scene processing and object categorization in highly cluttered environments [ C]. IEEE RSJ International Conference on Intelligent Robots and Systems, 2009. 4267-4274.

共引文献50

同被引文献152

引证文献28

二级引证文献162

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部