期刊文献+

基于模拟退火算法优化波长的面粉品质检测 被引量:8

Near-Infrared Spectroscopic Detection of Wheat Flour Quality Using Wavelength Optimization Based on Simulated Annealing Algorithm(SAA)
下载PDF
导出
摘要 模拟退火算法(simulated annealing algorithm,SAA)是一种随机搜索、全局优化算法,为提高近红外光谱检测面粉品质模型的准确度与稳健性,实验提出基于SAA优化波长,再结合偏最小二乘(partial least squares,PLS)法建模预测的定量模型,并对SAA中冷却进度表参数设置进行对比分析。实验依据面粉中灰分含量梯度,随机选取126份样本的近红外光谱建立SAA-PLS模型。结果发现,SAA从2 074个波数优选出70个波数,结合PLS建立的定量模型相关系数为0.976 0,交互验证均方根误差(root mean square error of cross validation,RMSECV)为0.022,预测均方根误差(root mean square error of prediction,RMSEP)为0.030 1,全谱建立的PLS模型相关系数为0.778 5,RMSECV为0.066 6,RMSEP为0.076 8。结果表明,基于SAA优化特征谱区,建立灰分定量模型是可行的,且准确度与稳健性明显优于全谱定量分析模型。 Simulated annealing algorithm (SAA) is a random search algorithm for global optimization. In order to improvethe accuracy and robustness of near-infrared spectroscopy (NIR) in detecting wheat flour quality, this paper proposed aquantitative prediction model using global optimization based on SAA combined with partial least squares (PLS). In thisalgorithm, a comparative analysis was made in different parameter settings of cooling schedule. According to the ash contentgradients in flour, the NIR spectra of 126 samples were selected randomly to establish an SAA-PLS model. Results showedthat 70 wave numbers were picked out of 2 074 wave numbers using SAA. The quantitative model established using partialleast squares exhibited a correlation coefficient (CC) of 0.976 0, a root mean square error of cross validation (RMSECV) of0.022, and a root mean square error of prediction (RMSEP) of 0.030 1, while the CC, RMSECV and RMSEP values of thePLS model based on the full wave spectra was 0.778 5, 0.066 6 and 0.076 8, respectively. These results indicated that it wasfeasible to establish a quantitative model for predicting ash content using wavelength optimization based on SAA, which wassuperior in accuracy and robustness to the full-spectrum model.
出处 《食品科学》 EI CAS CSCD 北大核心 2016年第12期208-211,共4页 Food Science
基金 北京市教委科研计划重点项目(KZ201310011012) 北京市教委科技创新平台建设项目(PXM_2012_014213_000023) 北京市自然科学基金项目(4142012) 北京市优秀人才资助项目(2012D005003000007)
关键词 模拟退火算法 偏最小二乘法 面粉 近红外光谱 定量分析 simulated annealing algorithm partial least squares method flour near-infrared spectroscopy quantitative analysis
  • 相关文献

参考文献18

二级参考文献184

共引文献805

同被引文献127

引证文献8

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部